CUSTOM USB INTERFACE FOR NEUROPROSTHESIS

BY

RAHUL KUMAR

ELECTRICAL AND COMPUTER ENGINEERING

Submitted in partial fulfillment of the
requirements for the degree of
Master of Science in Computer Engineering
in Electrical and Computer Engineering
in the Graduate College of the
Illinois Institute of Technology

Approved

Adviser

Chicago, Illinois
December 2004






ACKNOWLEDGEMENT
I would like to take this opportunity to thank all those without whom this thesis
would not have been possible. I would like to thank Dr. Stine for his excellent teaching
that gave me a good grounding in Verilog RTL and digital systems design. I would like
to thank Dr. Troyk for encouraging and instilling scientific thought, giving me his
suggestions on how to implement a reliable and robust design, and performing numerous

thesis reviews.

I would also like to thank Cathie for helping me with all the purchase orders, David
and Nishant, who shared numerous design and implementation ideas with me. I would
like to thank Keyur for suggestions regarding device driver and application development

and Swapna for fixing my computer and printing problems.

il



TABLE OF CONTENTS

ACKNOWLEDGEMENT it

LIST OF TABLES <ottt

LIST OF FIGURES .ottt

LIST OF SYMBOLS .ottt

ABSTRACT

CHAPTER
1.

INTRODUCTION oottt

1.1 Neuroprosthetic System Functionality —........ccccceceeveriieneeneeenne
1.2 PC Communication LinkKs........ccccevveeviernienerneniieninieeeeneceeene

REVIEW OF PREVALENT COMMUNICATION TECHNIQUES ...

2.1 Overview of Hardware Architectures ........ccccceeevveeeeveeennnen.
2.2 Analysis of Hardware Architectures..........ccccceeeueerveecueeecrveeennnen.

MOTIVATION FOR PRESENT WORK........ccocociiiiiiieiiieiiecee

3.1 Visual Prosthesis Stimulator System..........c.ccceeeverrciveerrreeennnnn.
3.2 Alternative Communication Links.........cccccecereevennienennenneennnee.
3.3 Advantages of the USB........ccccociriiiniiiiienieeiecieeeeeeeeee e

THE UNIVERSAL SERIAL BUS .o,

4.1 USB Architecture OVeIVIEW.......ceeeeveeeevieerreeeiieeeeireeeeesennneens
4.2 USB Transfer TYPeS.......ccueeuierieriieeiieeieeseeeeeieeeesereeeevaeeeennens
4.3 USB ENUMEration  ...cccoevcieeirniiiieeieriieeeeeiiteeeesireeeeeeeeessesssnnns
4.4 USB DeSCTiptor TYPES  ..eeveeieeieeeieiieeeeeiteeeenireeeeeeeee e e e s e

USB STIMULATOR DEVICE......cccccovviiiniiiiiniiiniiiiiieiiiccieceneen

5.1 The USB COIE ..cooveeereiiiieieieeeeeiiieeeeeeeeeseeareeeeeeeeessssssanseseeesenes
5.2 USB -Block chip Interface..........cccoeeervierriiniennienienecnieeeen
5.3 USB -Neurotalk Interface ......cccccoovvveviveiieeiiiiiiiiieeeeeeeeeeeeiianns
5.4 USB -Bandwidth Analysis .....cccccemvieriiiniiiniieeieeeeeceeee

FPGA PROTOTYPE DESIGN.......ccooiiiiiiiiiiiiiiiiiiiccececceceeee

6.1 USB-Blockchip Interface .......cccoeveeeiienciiiiieniecieeeieeieee e
6.2 USB-Neurotalk Interface.........ccccceeeveereerrieeniensieeesieeeeseeee e
6.3 FPGA Development Board .......cccccevvieevienieniienieeeeiieeeeen,

iv

Page
iii

vi
vii

ix



6.4 Device Driver and Application  ........cccoeceevrvieennieeeeeiiiiiieeeeenn. 81

7. USB INTERFACE SYSTEM TESTING......cccceccevtrnerieenieenieenieeenenn 82

7.1 FPGA Board Design and Testing  ......ccccceceeeuveeeriveeenieeeennnnennn 82

7.2 USB Core Testing and Verification...........ccccceceeververeenseeennneene 83

7.3 Interface Testing and Verification —........ccccovevveevieenieinncnnne 87

8. ASIC DESIGN FLOW....iicitoitiiieieieeieetesieste st eae st saesae s sse s saeens 92

8.1 SYNMRESIS oot 92

8.2 LaAYOUL....ttiiiiiiieieieeeeeiteee ettt e e e serre e e e e e e e e e e e s 93

8.3 DRC and LVS Checks  ....oooiiiiiiieeeeeeeeeeeeee e 95

9. DISCUSSION OF ACHIEVED RESULTS.....cciiiiiiiiiiiiiiiieene 100

9.1 FPGA Prototype Test Results..........ccoovviiiiiiiiiiiiiiininnin 100

10. DISCUSSION. ...ttt e e 107

10.1 USB Device Implementation...........c.oceviuiiiiieiiieeninennneanns 107

10.2 Recommendations. ... .....ueueeuteeeneitiiteaeeteaeeeeeeaennn 108

10.3 TeSt ReSUILS. . .uueieeie e e 109

11. CONCLUSION. ..ttt e e ee e 111
APPENDIX

A. BLOCKCHIP INTERFACE VERILOG RTL CODE .....ccccecvevennen. 112

BIBLIOGRAPHY ettt sttt ettt st ve st sne e s 122



LIST OF TABLES

Table Page
1.1 Summary of Various Communication Links.........ccccccceevierienernennieenneennneenne 8
4.1 DEVICE DESCIIPIOT. .. ceiiiuirieririiiieeeriiieeeesiteeeeesireeeessraeessssreeeeeeeessssssssssssnnssnnns 55
4.2 Configuration DeSCIIPLOT.......ccciirieeitieeieeiiieeie e este et eseeesteeeseaeeeeereeeeseeeenns 57
4.3 INtErface DESCIIPIOT....ccuvieitieeieeitieeieereeeteeseeeteesteeereesseeesseesseessseesseessseesseennses 58
4.4 ENADPOINt DESCIIPIOT....cccutietieeieiireeieeiteeiessteesreesteesaesaeesteesseesssesssssaessssseenas 60
5.1 Full-Speed Bulk Transaction LiMmits........ccccecereerernieneinennieneeneneeneeeseeeneens 71
6.1 ByteBlaster 25-Pin Header PINOULS.......c..cccceevierieiiennienienenienteieeeeneceeeeene 77
6.2 ByteBlaster Female 10-Pin Header Pinouts...........ccccceeveveiieeinieeceieeeceee e 77

vi



LIST OF FIGURES

Figure Page
1.1 A Neuroprosthetic system with most Functionality Implanted....................... 3
3.1 VP Prototype Block Diagram for a 64-Electrode Sub-Module....................... 31
3.2 BIoCK Chip ATCRItECIUTE.....cc.viieeiieeiiieeie ettt ettt srr e e e e siaaneas 35
3.3 Block Chip Timing Diagrami........c..ceeeeerrvuiernieeriieeniieeniieeessieesssineeeeesssnnneeens 37
3.4 Top Level Stimulator ArChiteCture..........cccveecuereieriieenieniieeeeeieeree e sieee e 38
3.5 Stimulator Bus-Block Chip Interface.........c.cccoecuervieniieeniiniiennieeieiee s 39
4.1 USB TOPOLOZY....ueiouiiiiriiniiiieniteniteteetestt ettt st sae e st esre st s s e s s e eas 45
4.2 USB CabIe....uueiiiiieeeeeee ettt ettt ettt st s 46
5.1 The USB Core Functional Blocks..........cccceeriiiiiiniiniiiniieieeieceeeeeeeene 63
5.2 Endpoint Data Transfer Timing Diagram..........c.ccceeceervveriierienseenieensieenveeenns 64
5.3 Timing Diagram for 8-Byte Data Packet..........ccecevvuierieriiienieniiiniensieenieeens 65
5.4 Logic Analyzer Waveform..........cceecueiriiriiiniienieeieesieeieeste et 65
5.5 Interface Data FOIMAL........coeivierieririenieeeienieeeteeteeee st 67
5.6 Neurotalk Bus TimiNG........ccccvuerriieriiieieiiieeeirieeeieessteeesreeesreeeesssnssseessssnnsenns 69
6.1 Prototype Board Block Diagrami..........cccceeecueeerieeniieeniieeniiieeeeenieeeeeeseienens 73
6.2 Adjustable Voltage Regulator.........cccccuvevriiiniiieniieeeieceieecsieeesvee e 74
6.3 Clock Generation CiICUit........cc.eevvereeruerriereenerrieneeneeteeeesreseeseeeseeeeeesneesne 75
6.4 USB Core Input/Output CONNECLIONS........ccceervriiriieriiieiiieireeeireeee e 76
6.5 Interface Core Input/Output CONNECHIONS.......cccueeverrvereerrerrrenienieeeeeeenreeseeeane 76
6.6 ByteBlaster Download Cable SchematicC............ccccueeeeieerciiiencieeecieeeee e, 78
6.7 Block Chip Interface Block Diagram..........cccceevueerieeiieenieeieenieeeecieeeeenveeenns 79
6.8 Photograph of FPGA Development Board............ccceccveeieevieenieniieenieesiieeenns 81
7.1 Photograph of the Underside of FPGA Prototype Board..........c.ccccveevuveennnee. 83
7.2 Circuit Diagram of Transceiver and USB Interface..........ccccceeeevvveenieennneennen. 84

vii



7.3 Enumeration Failure Test ReSUILS.....uuuuueeiiiiiiiiieeeee ettt e e eeeevveeneeeseenes 86

7.4 ClOCK SKEW.....coiiiiieiieiieieetei ettt ettt ettt 88
7.5 48-MHz Clock with DCLK half-cycle timing..........cccccceeveeriencieineeniieenieenns 89
7.6 48-MHz Clock with FCLK half-cycle timing...........ccocceeverrviiiiiniiieniiieenee. 90
7.7 FCLK and DCLK TimiNg......cccecerrtereerierierierieeneenieesteseesseesseseessessseseessesnnes 91
8.1 Synopsys Compilation STEPS.......cccueerueeeriureriieeriieeeiieesieeesreeeeessnreeeessssnnnens 93
8.2 LSI t0 TPR CONVEISION. ....ciiutiiiiiiiiiieiiieeiieeeite ettt e e eirreee e s 93
8.3 USB-BIOCKChID COTe.....ueieiiiiiiiieeiieeieeseeeieeee et esiee e esieesaeesaeesareeesneaee s 94
8.4 USB-Neurotalk Core.........coeevuerierienierienteieetesieeie sttt sre et e e e 95
8.5 LVS FIOWCRATT.....ceouiiiiriiiieieeierite ettt 97
8.6 USB-Block Chip ORCAD CiICUit....cceveerieriereerieeieneerieeireseesiesseeseeesseeseneens 98
8.7 USB-Neurotalk ORCAD CiICUi......cccueereeriuierieerieenieeieenteeseeeteeesieeeeeieeeenn 99
9.1 Blockchip Instruction AtribULES........cccveeeriieeriiieniieerieeenieeeereeenve e e eineens 101
9.2 Oscilloscope Screenshop of Blockchip Signals..........cccoecveeeienciiriieniienniennnen. 102
9.3 A partial Oscilloscope Screenshot of Blockchip Channle Output................... 102
9.4 A complete Oscilloscope Screenshot of Blockchip Channel Output.............. 103
9.5 Closeup of Neurotalk Output Signals.........ccccceeveeriereeririieneeneeieneeeeeeieens 104
9.6 Neurotalk Data Stream..........c.cevieeieeriieniienieeieeeeete ettt e e 105
9.7 Neurotalk Output Signals........ccccceeercieeriieeiiieeriieerieeereeesire e e e e ssrreeeeesaaeeees 105
9.8 Implementation of the SOF..........ccccciiiiiriiiiiieeeeeeeeeeee e 106
10.1 Proposed PCB based Development SyStem...........ccoceervverruveeernreeesiveeensnneens 108

viii



ABSTRACT

Neuroprosthetic research is nearing a point where it requires high-speed link to the
PC, owing to the higher number of electrodes being used. This research aims to verify
and validate the use of the USB, which is a widely available, high bandwidth PC
communication link. The USB provides flexibility in the different kinds of devices and
transfer types it supports. The USB protocol, along with the potential application types
are also described and discussed. An open source implementation of the USB IP core is
tested and customized for interface with two neuroprosthetic stimulator chips developed
at the Pritzker Institute of Bio-Medical Science and Engineering. Bandwidth analysis for
the application interfaces was done considering the bus timing limitations of the USB.
The difficulties faced while verifying the USB core, while implementing the hardware
development board, and while designing the interfaces are also discussed. The
development board was developed by hand and not as a PCB, as it gave complete
flexibility in implementing modifications. The problems encountered were resolved and
the USB core and two chip interfaces were successfully tested and validated using

FPGAs. The two different cores have been fabricated in ASIC.

ix



CHAPTER 1
INTRODUCTION

The Bio-Medical engineering field in recent years has enjoyed considerable success
with the use of the pacemaker for patients who have irregular heart rhythms and cochlear
implants that assist patients with hearing loss. Extensive research is currently being
conducted in the field of neuroprostheses, where the goals of the research vary from
brain-machine interface to stimulation of paralyzed muscle. Regardless of the application,
often the success of any implantable device depends on its functionality, the amount of
power it requires to function and the physical size of the device.

Power for an implanted neuroprosthesis device is typically provided over an inductive
transcutaneous link using a radio-frequency (RF) carrier, and that same link is often used
for data transmission to and from the implanted device. Using a separate communication
link for the implant is less common since the RF power link can be easily used as a
communication link, and setting up a separate link would require another inductive coil
pair operating at another frequency, and may consume valuable chip area and additional
power. To justify implantation, a device should also have sufficiently high enough
functionality. Most systems that are in the research stage are not fully implanted since
their functionality has been insufficiently researched or validated. Portions of the system
are left external so that their requirements can be refined in preparation for the design of a
fully implantable device. For modern neuroprotheses designs, as the functional
complexity, and number of communication channels are increased, so must be increased
the speed of communication to and from the implantable device. To select a reliable,
robust communication link that allows for high-speed computational control of the
implant, the use of personal computers must be considered. Only proven communication
links are widely available in the form of computer peripheral buses. Other commercially

available communication systems are more specialized and are not as common as the



peripheral buses. Adapting custom bio-medical devices to these buses is advantageous, in
terms of available support and availability on PC’s. Earlier research projects on such
devices had extensively used advances in computer technology. For instance, many
research projects used the serial port for data transfer, while some others had a
specialized hardware interface to the internal PC bus. Understandably system
development for devices using the serial port is relatively simple then for as compared to
specialized internal buss hardware devices. The specialized hardware devices, on the
other hand have better performance than the serial port, due to their direct access to the
high-speed PC data buss. For emerging neuroprosthesis research, there is a need for a
communication link, that is easy to implement and has higher performance than the serial
and parallel ports. This research establishes the feasibility of using the USB as a
communication link for a visual cortical stimulator that has been developed at the
Pritzker Institute of Bio-Medical Science and Engineering. Two prototype devices are

designed, implemented and tested. Each device is tested in FPGA and ASIC form.

1.1 NEUROPROSTHETIC SYSTEM FUNCTIONALITY

A neuroprosthetic system can be considered as a combination of devices that provide
electrical stimulation to neurons as compensation for functional deficit or disease. An
implantable neuroprosthetic system generally consists of three components; the external
component, called the external control unit (ECU), the implanted electronic circuitry
(IEC), and the stimulating or recording electrodes. The ECU consists of a PC that
interfaces with custom or off-the-shelf hardware and a communication link mechanism,
to send digital data/instructions to the hardware. For a stimulating neuroprosthesis, the

IEC hardware then converts the digital instructions into analog waveforms for driving the



electrodes. These waveforms then stimulate the neurons via charge injection through the

implanted electrodes. Such a system is pictorially depicted in Figure 1.1.

Communication

rem— Skin Boundary

N o -

C
ECU Tmiptamt >

Figure 1.1. A Neuroprosthetic System with most Functionality Implanted.

Figure 1.1 shows that most of the hardware functionality is implanted. This requires
that the IEC hardware be flexible to the kinds of instructions it can accept, thus
demanding a complex data structure so that a variety of commands can be accommodated
Having this high level of flexibility is a major requirement due to the fact that changing
the functionality, or replacing a unit with a new one requires the risk of surgery, which

should be avoided.

Addressing and instructing a large number of electrodes requires a higher speed and
bandwidth than provided by the widely used PC based RS-232 or printer parallel buses.
Used in this study, the cortical stimulator, for a visual prosthesis, is capable of
stimulating, in its current form, 256 electrodes. It is expected that 4 stimulators would be
implanted and combined for a 1,024-channel system. The increase in theIHrll?Jlrérllrllater of

addressable channels, over simpler devices like a cochlear implant (8-22 channels) has

lead to an increase in the demand for bandwidth between the PC and the implanted



devices. To update 1024 instructions, one for each electrode, in a reasonable small
amount of time requires an unusually wide bandwidth for the command link. An estimate
of the required bandwidth can be obtained as follows. Each instruction in the present
form requires 2-bytes of storage. So, 1,024 instructions will require a storage and transfer
of 2,048 bytes. The transfer rate of these bytes will depend on the refresh rate that is the
average in visual applications. A conservative refresh rate of once every 10ms can be
used. Thus the transfer rate in this case would be, 2,048 bytes/ 10ms. This number can be
reduced to 204,800 bytes/s or 204Kb/s, at the absolute minimum. This figure only
includes updating the frame buffer. It does not include the instruction that will command
the device to use the buffer. A variety of different commands can be implemented, for
instance some instructions can start, stop the stimulation, give a range of electrodes to
stimulate, etc. In addition to the above speed requirement, a communication link must
provide for a conservative amount of excess bandwidth that will take care of
communication bottlenecks that are not quite obvious at the start of any research project.
The various available communication links are discussed in section 1.2. It has been
determined through detailed analysis that in the visual prosthesis project the link operate

at 1.2Mbps.

1.2 PC COMMUNICATION LINKS

The available literature on the subject reports a variety of implantable neuroprosthesis
systems and communication strategies. Reviewing the research conducted over a 16 year
period shows that these techniques are necessarily technology dependent. A more
detailed comparative analysis of these research projects is done in Chapter 2. An

overview of each technique is given below.



Embedded System: An embedded system is a combination of computer
hardware and software, and perhaps additional mechanical or other parts, designed to
perform a dedicated function. The hardware usually comprises of a microprocessor,
random access memory (RAM), read only memory (ROM), digital-to-analog converter
(DAC) and analog-to-digital converters (ADC). The ROM is used to store program
instructions, which direct the embedded system to perform intended functions. Since
most embedded system software is developed on IBM-PC’s and Sun Microsystems
workstations, the parallel port or the serial port is used to download the program
instruction object code into the ROM. The RAM is used to store run-time data generated
during the functioning of the system. The DAC is usually used to convert digital signals
into analog form. These converters are usually used in systems where digital data is
converted into analog form, for instance in digital cell phones and television sets. The
ADC can be used with additional circuitry to accept interrupts and process them. The
data transfer speeds of an embedded system vary depending on the processor speed and
the data bus width that the system supports. Most embedded systems have a maximum
clock speed of 5-10 MHz and a data bus width of 8-16 bits. The ideal maximum data

transfer speed in such systems is about 20 Mbps.

RS-232 Serial Port: The serial port is a standard port available on every IBM-
PC. It can be accessed using C / C++ libraries and is a low cost, low performance

communication solution. The serial port can support a maximum of about 120 Kbps.

LPT Port: The parallel port (LPT) enables data transmission in parallel bytes,
instead of serial bit stream like the RS-232 port. It can also be accessed using C / C++

libraries. The speed of the parallel port is up to 200 Kbps.



PC bus (Custom Hardware): Custom designed hardware can be directly
interfaced with the PC bus. This requires the custom hardware to be electrically and
functionally compatible with the PC bus. A designer has to make sure that the timings of

all the signals are within a safe error margin mentioned in the particular bus specification.

PC bus (Commercial Hardware): Commercial hardware can be directly used
with the PC bus, without knowing how the bus works, electrically or functionally.
Operating system software and drivers are provided along with the hardware card.
Programming can be done using standard programming languages such as C/C++ or
using Labview or Matlab. The data transfer speed of the PC bus is about 40Mbps.

PC bus (Hybrid Hardware): The PC bus can be used as a combination of
custom and commercial hardware cards. For the custom hardware, all electrical and

functional and timing requirements must be met as discussed above.

USB (Commercial Hardware): Using the USB to exchange information
between PC and hardware is relatively new. This architecture uses commercial USB
compatible hardware to connect to the PC. Along with the hardware, operating system
drivers are also provided. The maximum data transfer speed of such systems can be 480

Mbps.

Table 1.1 shows a comparison between all the communication links described above.
For the cortical stimulator system under consideration, the only communication links that
give us the required bandwidth are the PCI bus specialized hardware, the USB and
firewire. Out of these the PCI bus based specialized hardware is rejected as it is not
available with every PC and requires the use of a special card inserted into the PC.

Firewire and USB are both new communication links aimed at high bandwidth transfers.



This research used USB 1.1 instead of 2.0 and firewire due to the easy availability of a
USB 1.1 core and better support with respect to the hardware IP core and the device and

application software.

Table 1.1. Summary of Various Communication Links.



Communication Transfer Speed Positive Negative
Links Attributes Attributes
Embedded 20Mb/s 1) Developer 1) Complex to
Systems has control over implement.
every aspect of
implementation.
Serial Port 120Kb/s 1) Can have 1) Slow
long cables, and
requires only a
few data lines.
Parallel 200Kb/s 1) Easier to 1) Uses large
Port implement, number of data
compared to lines.
serial port.
PCI Bus 40Mb/s 1) High 1) Too
(Specialized functionality, specialized, not
Hardware) speed. available with
2)Good all PC’s
development
support.
USB 1.1/2.0 12Mb/s (1.1) 1) High speed. 1) High initial
480Mb/s (2.0) 2) Good learning curve.
development 2) Involved
support. device driver
3) IP Cores development.
available.
Firewire 400Mb/s 1) High speed. 1) Lack of

2) Good
development
support.

freely available
cores.

2) Initially
developed for
high speed
video and
audio
applications.




CHAPTER 2
REVIEW OF PREVELANT COMMUNICATION LINKS
The previous chapter introduced various different architectures that have been used in
the past and ones that are currently prevalent. A description of each research project and
how different hardware architectures have been used in the past is included in this

chapter.

2.1 OVERVIEW OF VARIOUS HARDWARE ARCHITECTURES

I. Embedded Systems.

1. A computer controlled vest for cardiopulmonary resuscitation

(CPR) [2]. Objective: The objective of this research was to design and
implement an embedded controller for vest Cardiopulmonary Resuscitation
(CPR).

Hardware: The hardware consists of three different modules. The first one is
the PC that is used to download program code to the second module. The
second module is an embedded computer. It consists of an Intel 8088
microprocessor, ROM (to store the execution program), RAM (to store
temporary data generated during runtime), a universal transmitter/receiver to
enable RS-232 communication between the PC and the embedded computer, a
timer for interrupt generation, an A/D converter and I/O ports. The third
module is the power stage circuit that interfaces with the I/O ports. This stage

drives the valves that control the flow of air in and out of the CPR vest.

Software: Two different programs are used in this system. One collects and

stores the data and the other one analyzes the data and prepares it for use. The



10

first program collects data from the user. This data directs the timing and
durations of the valve opening and closing. Once the user enters this data, it is
sorted chronologically. This information is stored as a file in the PC and is
also sent to the embedded computer by the second program. The embedded

computer then controls the CPR vest as directed by the user input.

2. A portable neuromuscular stimulation system for use in paralyzed
upper extremities [4]. Objective: This research aims to design a portable
system for neuromuscular stimulation of paralyzed arms.

Hardware: The hardware for this system was located in three separate PCB’s.
These were for the processor, signal conditioning and stimulation output
respectively. The CPU used was a Motorola CMOS MC146805E2
microprocessor. An 8-bit programmable timer, 112 bytes of RAM, a 64Kbit
EPROM, eight channels of ADC and DAC were implemented on the same
PCB. The signal conditioning hardware included two channels of gain and
low-pass filtering. The stimulation output circuitry was located on the third
circuit board and consisted of intra-muscular electrodes that are implanted
percutaneously. This system uses input from the user to function. The input
goes to the signal conditioning hardware and then through an ADC to the

microprocessor system, which makes the decision on the stimulation output.

Software: The system software was developed on a DEC minicomputer
system and was written in assembly language. A cross assembler generates the
object code for the microprocessor. A PROM programmer is then used to

enter the object program into the EPROM.



11

3. System architecture for a digital signal processor based microcomputer
for use in a multielectrode cochlear implant system [16]. Objective: This
research aimed to implement a multielectrode cochlear implant system.
Hardware: The hardware was based mainly on a Texas Instruments DSP
processor. It has 4K of 16 bit program memory, a commercial codec chip, an
interface chip for the parallel DSP and the serial codec chip, analog
conditioning chips and an RS-232 interface that is used to download program
code into the ROM.

Software: DSP techniques were used to extract features from the speech

signal.

4. A microprocessor-based data-acquisition system for measuring plantar
pressure from ambulatory subjects [25]. Objective: The aim of this research
was to design a microprocessor based data acquisition system for measuring

pressure data from ambulatory subjects.

Hardware: The portable microprocessor based acquisition system consists of
14 polymer pressure sensors, 14 amplifiers, 8-bit ADC a Hitachi
microprocessor, an 8-kbyte CMOS ROM, four-32Kbyte CMOS RAM’s and
interfacing I/0 circuits. Data stored in the portable unit are downloaded to an
IBM-PC through the parallel LPT port.

Software: The software download to PROM is not mentioned in the research

paper.

5. A microprocessor-based multi-channel stimulator for skeletal muscle

cardiac assist [6]. Objective: To design a microprocessor based multi-channel



12

stimulator for skeletal muscle cardiac arrest. This is a treatment for chronic
heart failure.

Hardware: The system is built using the Motorola MC68HC811
microcontroller. It is used to send control signals to an analog module to
generate desired pulse sequences. Pulse sequences are defined using software
and are downloaded into the microcontroller using the RS-232 serial port. The
microcontroller has a built in serial port, 256 bytes of RAM, 2K of EEPROM,
an 8 channel ADC and various timers.

Software: The software was designed as an easy to use graphical user
interface. It specifies pulse sequences. These sequences are stored in a file as

events that the microcontroller executes.

6. CMOS Neurostimulation ASIC with 100 channels, Scalable Output,
and Bidirectional Radio-Frequency Telemetry [23]. Objective: This
research designed, implemented and tested a 100 channel Neurostimulation
circuit comprising of a CMOS ASIC chip. A radio-frequency communication
link for power and data was also designed. The ASIC was designed primarily
as a treatment of degenerative disorders of the retina.

Hardware: The overall system comprised of an external image processor, an
external encoder/transmitter, internal receiver/decoder stimulator. An image
captured by a CMOS camera, is processed by the external image processor,
which processes the image into a 10x10 array of pixels. Within the external
encoder/transmitter, each pixel is translated into an encoded RF telemetry
sequence. Upon receiving the RF signal the implanted internal
receiver/decoder stimulator decodes the instruction received and stimulates

the appropriate electrodes.



II.

13

Software: A programmable protocol extracts and pixelizes the acquired image

into a 10x10 pixel array.

7. A Wireless Implantable Multichannel Digital Neural Recording System
for a Micromachined Sieve Electrode [1]. Objective: This research
developed a wireless implantable Multichannel digital neural recording

system for a micromachined sieve electrode.

Hardware: The hardware consists of three modules, a microcontroller with
transmitter electronics, a receiver circuit with instruction decoder and the
electrode module. A Motorola 68HC11 microcontroller was used to generate
serial encoded data to be transmitted over the inductive link. Based on the
channel address and mode of operation different instructions were generated,
transmitted, decoded and executed, thus generating an appropriate waveform
on the electrodes.

Software: The software design for the research was not discussed.

RS-232 Serial Port

1. A Programming and Data Retrieval System for an Upper Extremity
FES Neuroprosthesis [10]. Objective: This research aimed to design a
stimulation and data retrieval system for upper extremity stimulation system.

Hardware: The hardware consists of a stimulation unit that has electrodes and
a shoulder position transducer, an electrical isolation pod, an interface module
and an interface module controller box for user input. The PC is used to

download software into the interface module. The RS-232 bus is used to



14

communicate with the interface controller. The PC provides for real-time
software programming and data retrieval from the stimulation system.
Software: The software was developed on the IBM-PC. It provided for real-

time communication with the stimulation system

2. Accuracy of Drug Infusion Pumps Under Computer Control [7].
Objective: This research designed a prototype system to automate drug
infusion. To do this a microcomputer was interfaced to a drug infusion pump,
through a serial communications interface. The flow rate of three
commercially available drug infusion pumps with an internal or add-on serial
communication interface was tested under computer control.

Hardware: The pumps were connected to the PC through the RS-232; to
compare the available infusion pumps in the market.

Software: The software design for the research was not discussed.

3. A Custom-Chip Based Functional Electrical Stimulation System [3].
Objective: This research designed a functional electrical system based on a
custom ASIC chip. Using this system up to 32 chips can be connected serially
to a host computer.

Hardware: In this design, up to 32 chips can be connected to the RS-232 serial
port. Each chip can be addressed individually. Each ASIC chip is able to work
in either master or slave mode. Each system requires one ASIC chip to be in
the master mode with oscillators attached. All the slave chips derive their
clock from the master chip. In this configuration, one address is required for

each individual slave chip. Since each chip can control/address 8 stimulation



III.

15

channels, this configuration results in an address space of 256 independently

controllable stimulus channels per communication link.

Software: The software uses library calls to transmit real-time program

information to the chips

LPT Parallel Port

1. A Telemetry System for the Study of Spontaneous Cardiac
Arrhythmias [19]. Objective: This research designed a data acquisition
system to gather data relating to cardiac arrhythmias.

Hardware: The hardware consists of two main components. The implantable
unit and a back pack unit. The implantable unit consists of analog input
electrodes, multiplexers and an ADC. The back pack unit consists of a custom
designed serial card, that converts serial data from the implanted electrodes to
parallel data that can be read by the PC parallel port. The received data is then
processed by a CPU and prepared for transmission via a wireless LAN card.
The data was received from the test subjects directly on the LAN, and thus the
localization of data analysis software was eliminated.

Software: The software was written using a commercially available data
viewing and analysis language PV-Wave. Special routines were implemented
to provide custom viewing functions and to speed input/output and plotting

functions.



IV.

16

PC Bus: Custom Hardware

1. A 16-channel 8-Parameter Waveform Electrotractile Stimulation
System [11]. Objective: To study the psycho-physiological performance
associated with wvarious stimulation waveforms by designing a general-
purpose electro-tactile stimulation system.

Hardware: The stimulation system consists of a waveform generator, a PC,
and analog system (ADC and DAC’s), voltage to current converters,
knobs/sensors and electrodes. The knobs/sensor analog data is converted to
digital format using the ADC/DAC’s in the analog module. The PC through
the PC bus reads this digital data. The PC then outputs timer data to the
waveform generation module. Once the waveform generator determines the
wave shape, it is passed on to the voltage-to-current converter and then to the
electrodes.

Software: the PC through the connected bus controls the entire system.
Customized software package translates a user input file containing
commands for all waveform parameters. All software was written in Turbo C

and Turbo assembler for time critical tasks.

2. Computerized Trancutaneous Control of a Multichannel Implantable
Urinary Prosthesis [20]. Objective: This research describes a PC interface of

a multi-channel, implantable, urinary prosthetic device.

Hardware: The hardware for this system consists of six modules. The first
three are an IBM-PC, a microcomputer hardware interface, and an AM

modulator. The second group consists of an AM demodulator, an AC to DC



17

converter and a multi-channel CMOS chip. The outputs of the CMOS chip are
connected to electrodes. The microcomputer hardware interface is used to
convert parallel data from the PC bus to serial data that is used by the AM
modulator for transmission. Once the data is received by the AM
demodulator, it is passed onto a multi-channel CMOS chip, which is basically
a microprocessor that executes 24-bit command words at 300Kbits per
second. In the output stage, the CMOS chip contains control and current
source blocks to interface with the implanted electrodes.

Software: The software designed was a multifunction program that allowed
the user to communicate with the stimulator hardware. All the I/O tasks were
programmed in assembly language. The data analysis and processing tasks
were designed in Pascal. The software was designed to accept commands

from a basic user interface, or from a command file.

PC Bus: Commercial Hardware

1. A New Approach to Man Machine Communication for Computerized
Microscopy [13]. Objective: The research aimed to design a new
computerized microscope. This microscope was fitted with objective and
stage encoders and a built in high-resolution computer display to superimpose
dialog, drawing and messages onto the optical microscope image.

Hardware: The hardware consisted of a microscope, a video monitor driven by
a VGA standard graphics display card, encoder card to control the x and y
position of the microscope. These cards communicate with an IBM-PC

through the PC bus.



18

Software: The software is structured as a collection of different modules. One
module is used to mark any object of interest. Another module is used to
calculate the size of a particular object. The software can also display and
store already examined portions of the sample under observation. Another
module can be used to take printouts. The software is also capable of sharing

the data stored on an internal office network.

2. A Computer-Controlled Research Ventilator for small Animals:
Design and Evaluation [22]. Objective: This research aimed to design a
computer-controlled ventilator for small animals.

Hardware: The hardware for the system consisted of an IBM-PC, DAC and
ADC cards installed on the IBM-PC, a linear motor and a linear motor power
amplifier. Three valves were also used to control the airflow into the animal
compartments. These valves were controlled using a DAC. The cylinder
(airflow) and tracheal pressure was measured using a pressure transducer and

converted to digital format using the ADC.

Software: The software design for the research was not discussed.

3. A New Video-Synchronized Multichannel Biomedical Data
Acquisition System [24]. Objective: This research designed a data acquisition
system for bio-medical data. The system was video-synchronized and
simultaneously acquired data with video time codes on a hard drive.
Hardware: The system used a video camera connected to a video tape recorder
(VTR). The VTR was connected to a TV monitor and to an interface board.

Biomedical data is also routed to this interface board. This interface board is



19

connected to an IBM-PC compatible Data input/output card (national
instruments). The system records storage-intensive video images onto a
videotape and simultaneously acquires biomedical data and video time codes
onto a computer hard drive.

Software: LabView graphical programming was used to program the data

acquisition, processing, storage and replay and VTR control.

4. A Multichannel Continuously Selectable Multifrequency Electrical
Impedance Spectroscopy Measurement System [8]. Objective: To design a
multichannel, multifrequency electrical impedance spectroscopy (EIS)
measurement system.

Hardware: The EIS was designed to be modular to enable upgrade and
modification of any component as necessity dictated. The computer used to
control the EIS was a 200 MHz Pentium pro. EIS channel modules were
implemented on custom PCB’s. Each PCB controlled 8 channels.
Communication between the PC and the EIS cards was achieved using a
commercial digital I/O card. A waveform generator was used that was capable
of generating arbitrary functions by direct signal synthesis. Data acquisition
was also performed using a commercial board that had 4 input channels, with
a 200KHz rate and a 16-bit resolution.

Software: The software was written using libraries provided by the
commercial board providers. The hardware interface software for the EIS was
implemented as an ActiveX control in C++. The user interface was designed

and implemented in Visual Basic.



20

5. A Fast digitally Controlled Flow Proportional Gas Injection System for
Studies in Lung Function [12]. Objective: To design a device used for gas
injection in mechanically ventilated patients.

Hardware: The system included a PC, an ADC, a pressure sensor
demodulator, flow sensor and a valve array. The flow sensor detects the
pressure of the gas and the pressure transducer converts this information to an
analog signal. The PC then converts this analog signal into digital format for
use in determining the pressure. The software in the PC then regulates the
valve array to increase/decrease the amount of gas flowing into the flow
sensor, and thereby to the patient.

Software: The software design for the research was not discussed.

6. Computer Controlled Mechanical Stimulation of the Artificially
Ventilated human Respiratory System [15]. Objective: To design a
computer controlled artificial lung to simulate various lung pathologies.

Hardware: The hardware used an existing mechanical simulator including the
necessary sensors, actuators, interface electronics and controllers. The main
compartment is an air compartment with a piston that can be controlled using
an electrical motor. The air compartment was connected to a flow-resistance
compartment. The resistance compartment also has a resistance sleeve to
control the resistance of airflow. The functioning of the system was studied at
different flow resistance settings. The flow resistance sleeve was positioned
using a servo-motor through a ADC. The ADC was also used to input the
various physical parameters of the resistance compartment and converted into
digital format. A motion controller card was then used to run a servo- motor

for the main air compartment.



21

Software: The real-time software was written in MATLAB by communicating

with the interface card using the real-time toolbox available with MATLAB.

7. BCI2000: A general purpose Brain-Computer Interface System [21].
Objective: To design a universal computer-brain interface model to assist
severely motor-handicapped patients.

Hardware: The system model was designed using ADC, which received
amplified and filter brain EEG signals. The computer software then processed
the signals internally. The system model was then implemented using
different hardware components (PC and Data acquisition boards).
Performance was measured using the different hardware components. The
systems were compared for output latency, jitter, clock jitter and processor
load.

Software: The software was implemented in the C++ libraries provided by the

board manufacturer.

8. Development of Brain-Computer Interface: Preliminary Results [18].
Objective: This research aimed to evaluate the feasibility of using EEG
signals for control and communication with a computer, thereby moving
animated objects on the computer screen.

Hardware: The hardware consisted of a PC, EEG amplifiers and a data
acquisition card. The subject is placed in front of the screen, and gel filled
electrodes are placed on specific, predefined locations on the scalp. An EEG is
used for signal amplification and the acquisition card is used for signal
digitization. The computer also has a video card the splits the video output to

two high-resolution monitors.



VI

22

Software: The software design for the research was not discussed.

9. Implementation of a Telemonitoring System for the Control of an
EEG-Based Brain-Computer Interface [17].

Objective: This research presents a remote monitoring system for an EEG
based brain-computer interface.

Hardware: The hardware consists of three major components, the supervisor
system, the patient system, and network system. The brain computer interface
consists of a laptop, a National Instruments data acquisition card, a PCMCIA
card and an EEG amplifier. This system is connected via a network cable and
a network card to a multimedia PC. The monitor system at the supervisor end
serves as a monitoring station for training purposes.

Software: All three systems use the Microsoft Windows operating system.
The brain computer interface (BCI) is programmed using MATLAB and
SIMULINK. Software like PCAnywhere and Netmeeting were used for

training purposes.

PC Bus: Hybrid Hardware

1. A Real-Time Experimental Prototype for Enhancement of Vision
Rehabilitation using Auditory Substitution [5]. Objective: This research
designed a prototype system for the vision rehabilitation using auditory
substitution.

Hardware: The hardware consisted of the following components: a miniature
camera to capture visual stimulus, a video digitizer, 2 sound production

boards (one for experimenter and one for subject, each is connected to a



23

headphone) and video monitors. The image digitizer is connected to the PC
through the bus and is run continuously in frame grabbing mode. The 2 sound
cards were custom designed using off-the-shelf music processors and were
also interfaced with the IBM-PC through the bus.

Software: The software was written in C. The software initialized all the
components of the system and started the frame grabber. The image acquired
by the camera was processed and displayed and then converted into sound
using custom algorithms. The sound amplitude was then transferred to the

sound cards through the PC bus and then output to the headphones.

2.Wireless In-Shoe Force System [14]. Objective: This research presents a
wireless in-shoe force system to acquire, process and transmit foot-floor force
information that has been proven feasible for use with normal and paraplegic
subjects.

Hardware: the system consists of various sub-systems: insole, transmitter,
receiver and PC/Operator interface. The insole measures the actual force
applied between the foot and the floor at four or six key points under the foot.
Force applied to the foot, gets converted into voltage, which is further
processed and used as an input into an analog to digital converter. Digital
voltage readings are then used by a microcontroller to compute the actual
force in pounds. A transmitter system then transmits the data to an external
receiver. The receiver formats the received data into an appropriate data
structure required by an external processing unit. The PC/Operator subsystem
prepares the transmitter for data acquisition by calibrating the force sensors
for a particular person. The subsystem consists of an IBM compatible PC and

a special serial interface. The transmitter is calibrated using a conventional



24

serial interface. The program is downloaded into the transmitter using a serial
connector.

Software: The software design for the research was not discussed.

VII. USB: Commercial Hardware

Brain-Computer Communication and slow cortical Potentials [9].
Objective: To design and implement a brain-computer interface using slow
cortical potentials.

Hardware: The hardware consisted of a PC connected to an EEG machine
through the USB. The system is designed for used in a closed loop. The EEG
acquired brain signals and the computer processed (amplified and filtered)
these signals and accordingly the brain-computer user interface performed
certain functions. The occurrence of certain events then triggered an eye
movement signal that proceeded in the same fashion to the PC and performed
another function and so on.

Software: The software design for the research was not discussed.

2.2 ANALYSIS OF HARDWARE ARCHITECTURES

We can see a trend in the above overview. The earliest studies were done using the
embedded architecture, and then came the PC Serial and Parallel port. Years later the PC
bus was extensively used as PC became widely used. Since in the early days of the PC,
there were limited hardware options available, and most people chose to design custom
built hardware to interface with the PC bus. Then as more and more commercial vendors
provided various solutions, researchers started using commercial off-the-shelf hardware

and sometimes used a combination of custom and commercial solutions. More recently



25

there has been significant shift in the communication interfaces available in a PC. The
Universal Serial Bus (USB) is a serial port but with significantly higher bandwidth than
the original serial port. Due to the higher performance of USB and the standardization of
the port, many commercial hardware providers are developing USB based hardware that
can be exploited by bio-medical researchers.

This research designed and implemented a custom USB device for use in a research
project that is discussed in chapter 3. It also evaluates the performance of USB as it
relates to the research and to other more general applications. The device implemented to
complete this research can be easily modified to be used as a generic custom-built USB

device.



26

CHAPTER 3
MOTIVATION FOR PRESENT WORK
The custom USB device mentioned in section 2.2 was designed and implemented for
use in the Visual Prosthesis (VP) project currently under research in our laboratory. The
VP project aims to design, fabricate and test a multi-channel transcutaneous, cortical
stimulation system to be used in a prototype of an artificial vision system. A block
diagram of the proposed prototype is shown in figure 3.1. The aim is also to provide a
minimum of 256 implantable cortical electrodes. The figure in 3.1 is a diagram of a sub-
module that addresses and stimulates only 64 electrodes. Four such sub-modules will

increase the number of electrodes to 256.

SkinY.ayer

£ 1 Pan) B
COIIITOIIET UIIp

Block-Chip
Data Channel

Block-Chip0

Fromt-Erd Chip
O; Digital
Camera
ﬂ Demodulator . .
Wireless
Image . .
Processor/
Transmitter Bridge
Block-Chip
Data Channel <

Block-Chip7

Figure 3.1 VP Prototype Block Diagram for a 64 electrode Sub-module.

Using a design employing smaller sub-modules has advantages that are beneficial for

the VP project. The power supplies and transmission/receiving circuits of each sub-



27

module are separate, thus if the power regulation in one module fails, it does not fatally
effect the entire implant. Redundancy is also a main feature of the design inside each sub-
module. Each block chip has its own controller data channel, and each channel on each
block chip has its own current driver, thus in the event of a current driver failing, the
other channels of the block chip will still be usable.

The way such a device would work is as follows. The digital camera captures an
image and transfers it to the wireless image processor/transmitter. This module pixelizes
the image and makes a decision as to which particular cortical electrode should be
activated, how much current should be applied and for how long. Instruction for
stimulating single, or groups of electrodes would be sent over the wireless link to the
implanted devices underneath the skin. The bridge circuit of the module then generates
power for system-wide use and accepts reverse telemetry for transmission to an external
module. The demodulator generates the master clock, data clock, timer clock, serial data
stream and other control signals. These signals are then sent to the controller chip and are
shared by all block-chip data channels. The controller chip is a finite state machine
(FSM) that decodes the incoming instructions, issues the instructions to their
corresponding destinations (8-channel block chips). The block chips then execute the
instructions they receive by generating waveforms on one or more electrodes as
specified, to generate a pixelized image for the patient.

To design the prototype system described above, various intermediate systems need
to be devised and tested on real animal/human subjects. One such stimulator system was
designed and extensively tested to acquire data on visual cortex view-field mapping. This
system is described in detail in section 3.1 along with disadvantages when considering

system flexibility.

3.1 VISUAL PROSTHESIS STIMULATOR SYSTEM



28

A benchtop, visual prosthesis stimulator system was designed, as part of an earlier
phase of the visual prosthesis project to have the capability to address and control 128
electrodes. The goal of this phase was to create a benchtop stimulator to evaluate various
stimulation techniques in an animal model, and to evaluate the design from an
implantable system standpoint. The benchtop stimulator provided a basis for the design
of the USB interface that is the subject of this work. This system was comprised of 16
block chips, each having 8 addressable electrode channels. The system was designed to
optically isolate the input signals of the block chip from the computer. On most bio-
medical systems an optically isolated implant is required to protect against unwanted
voltage spikes on the computer power supply, affecting the signals going to the implant.
Since the complete system was powered using a 12-volt lead-acid rechargeable battery, in
addition to using the optoisolators, the implant was completely isolated from any AC
power supply. In this initial benchtop system, a high-performance PC was used in
conjunction with a commercial off-the-shelf digital input/output (DIO) card from Adlink
technologies, as the interface to generate and issue instructions to the stimulator. The
DIO card was programmed to output instructions to the stimulator system, using the
vendor provided C++ and Visual Basic libraries. A graphical user interface was designed
in Visual Basic to simplify the instruction generation process. To understand the
limitations of this stimulator system, a deeper understanding of the system architecture is
required. This includes the DIO card and the block chip architecture. Doing so will
clearly demonstrate the limitations and provide in insight into the various available

solutions to eliminate and effectively deal with those limitations.

L The NuDAQ PCI-7300 Digital Input/Output Card. The DIO card is a PCI
form factor ultra-high speed card with 32 input/output channels. It performs

high-speed data transfers using bus-mastering DMA via the 32-bit PCI bus



II.

29

architecture. The maximum data transfer rates can be up to 80MB per second.
Extensive software support is also provided with the card. Software drivers for
packages like LabView, HP VEE, DASYLab etc. are provided. Libraries for
Borland and Microsoft C/C++, Visual Basic are also provided for both

Windows and Linux platforms.

Block-Chip Architecture. The logic level diagram of block-chip circuitry, as
shown in figure 3.2, has 5 input signal lines, and 4 power lines, 8 stimulation
channels. Each channel consists of a 4-bit timer and 7-bit current output DAC.
The DAC produces the required biphasic pulse and the timer controls the
duration of the pulse. Generating a pulse requires a 16-bit data stream to be
read in to the shift register. The first 3 bits that are read are the channel
address lines, AD2, AD1 and ADO respectively. These address lines set the
multiplexer to the appropriate channel. The next 7 bits are the amplitude bits
meant for the DAC and are read in as A6, A5, A4, A3, A2, Al and A0
respectively. The next 4 bits are the timer bits that decide the duration of the
output pulse and are used as inputs for the 4-bit Timers. The last two bits are
the polarity and holdoff bits respectively. The polarity bit decides whether the
output pulse will have the cathodic phase or anodic phase first. The holdoff bit
is used for simultaneous stimulation. If it is set to 0, stimulation will start at
the next rising edge of the TCK, after the rising edge of the LE. If it is set at 1,
stimulation will not begin until the next rising edge of the TCK after SIM is

asserted.



30

Figure 3.2. Block-Chip Architecture.

Vv G
TCK
Y| |INDIF
RESB i
i 7
13 Bit Latch 4 Bit Timer 7BitDAC |—— »
LE Towae 1
IE 13 Bit Latch L 4 Bit Timer 7 Bit DAC |——m7—p
TAaswae D
T 13 Bit Latch o) 4BitTimer || 7BitDAC | —
TAawae D
/ IE 13 Bit Latch g 4BitTimer || 7BitDAC | —
T+ A
LE—— T 13 Bit Latch i 4BitTimer || 7BitDAC |——— §
e 13 Bit Latch C 4 Bit Timer || 7BitDAC f——ou
= 13 Bit Latch 4 Bit Timer || 7BitDAC f——ou
- 13 Bit Latch 4BitTimer || 7BitDAC ——— »
] T Tout 8
v
TCK
A
H P |TO |T1 |T2 [T3 |AO [A1 |A2 A3 A4 A5 6 AQO AD{L AD

1. Signal Description:

a) DIN: This is the serial 16-bit data instruction that is stored in the
shift register.

b) DCLK: This is the clock used to shift the 16-bit data into the
shift register. The frequency of this clock was set to SMHz.

¢) LE: This is the latch enable signal that latches the 13-bit
waveform attribute bits into one of the 13-bit latches shown in
figure 3.2.

d) TCLK: This is the clock used by the 4-bit timers to output

waveforms with the desired pulse width duration.



31

e) RESB: A logic low (0V) on the RESB line resets the 4-bit timers
and the state machine logic circuit, thus terminating all
stimulation pulses currently in progress.

f) SIM: The SIM line is used to generate pulses on multiple
channels simultaneously. The rising edge of the SIM sets a flip-
flop, and on the next rising edge of the TCK, all the channels

with the holdoff bit set will start stimulating simultaneously.

2. Timing Description. Figure 3.3 shows the timing characteristics of the
block chip along with minimum times for certain signal lines. Before a block
chip can start stimulating, it needs to be provided a 16-bit instruction as
described above. When the DIN signal is settled in any one particular state, a
rising edge occurs on the DCLK signal, thus shifting in the state on the DIN
signal into the shift register. This keeps repeating for 15 more DCLK cycles to
shift in all the 16 bits. Once the instruction has been read in, the LE signal is
used to latch the data into the 13-bit latches in the block chip. The remaining
3-bits are used to decide the address of the channel, for which the data is
meant. The LE pulse is supposed to go high at least 200ns after the last data
bit has been read in and it should remain high for at least 100ns. In addition,
the minimum time between the rising edge of the LE and the next rising edge
of the TCLK should be 200ns. If this timing constraint is not met, the

AD2 ADIADQO A6 A5 A4 P H
stimulfﬁﬂfl S tsi

DCLK

LML L L L L L L L

- = 7 1
TCLK

LE

Iout_» il j

sul T

su2

Y

;ﬁ
A

A
A

Pwmim su3




III.

32

Figure 3.3. Block-Chip Timing Diagram.
Tsi1 = Minimum time data must be stable before rising edge of DCLK.
Ts2 = Minimum time between clocking in of last data bit and rising edge of
LE.
Tss = Minimum time between the rising edge of LE and the rising edge of
TCLK. If this time constraint is not met, stimulation will begin

normally at the next rising edge of the TCLK.

DIO card, Block-Chip Interface. The stimulator system was designed to
address and stimulate 128 electrodes. This required using 16 block chips,
since each block chip can address 8 channels. The system diagram of the
complete stimulator system is shown in figure 3.4. Since the DIO card is PCI
based, it conforms to the electrical, functional and timing specifications of the
bus. The PC used had a SCSI bus, as most of the waveform instructions were
stored on the hard drive. To reduce the latency of transferring the instructions
from the drive to the DIO card, the faster SCSI bus was used. The stimulator
bus consisted of the above mentioned block chip signals. Figure 3.5 shows the

stimulator bus in more detail.



33

Stimulator Module

IIII
128

Stimulator Bus . . . . Electrodes

PCI Bus

O u - N

K

) E—

= EEERE
DIO Card

IBM-PC w/SCSI bus . . . .

16 Block-Chips

Figure 3.4. Top Level Stimulator Architecture.

Figure 3.5 shows how the bus is connected to the stimulator device. The
signals that are common to each block chip, are as follows: DIN, DCLK,
TCLK, RESB and SIM. The unique signals are the LE signals, i.e., each block
chip has its own unique LE signal to let the user control which block chip is

stimulated at what point in time.

DIN

A\ 4

A\ 4

& DIO Card Chlp 0

IBM-PC w/SCSI bus

PCI Bus DECER
L —— 1 Il ‘ Block

A\ 4

A\ 4

A\ 4

—>
Stimulator Bus

To other Block-Chips




IV.

34

Figure 3.5.Stimulator Bus —Block Chip Interface.

Even though different electrodes in different chips may require waveforms
of different stimulation parameters, the architecture uses a common serial data
line DIN. Doing so is safe from a stimulation standpoint because of the fact
that the respective LE lines that will actually trigger the stimulation as
describe above. Hence for all the 16 block chips we need a bus that is 21 bits
wide, five lines for DIN, DCLK, TCLK, RESB and SIM and 16 lines for LEO

through LE15.

Limitations of this architecture. The DIO card used for the stimulator
system has 32 input/output lines. Since the stimulator system used 21 lines,
using the DIO card to control the stimulator system was a good solution.
Future generations of stimulator systems will require more than 128
electrodes. The next generation stimulator systems as proposed in the visual
prosthesis project and discussed above, have already been theoretically
devised, however, due to unfavorable electrode density, implanting 1024
electrodes is years away. However, planning for the interface to communicate
with a 256 channel system is presently underway. Since for 256 channels
there would be 32 block chips, we would require 32 digital output lines in
addition to the 5 common lines for the whole system. This makes the total
number of digital lines to 37 lines. The current choice of the DIO card is
unable to satisfy these requirements. The solution lies in using 2 of these
cards, using a card with more digital lines, or modifying the way in which LE
signals are transmitted, since LE’s require most number of lines. We now look

at each of these solutions. Using two DIO cards is certainly possible, but



35

given the cost of each card ($900 each) and the amount to computing
resources used for using such a system and the complexity of programming
each card, a simpler solution is required. In addition, use of the DIO card
does not allow for easy portability between computers, especially for

notebook computers,

Using a DIO card with more number of digital lines is delaying the
inevitable. Eventually, stimulator systems would require more and more
number of electrodes. When that happens, a similar problem would arise.

The other solution is to generate the LE in a different fashion. The LE’s
could be transmitted serially on one digital line. The modification requires the
design and fabrication of another chip with a 32-bit shift register. Additional
logic would decide which block chip needs to be sent an LE signal. Even if we
divide the LE’s into two groups and have two 16-bit shift registers, it would
require an extra digital line and almost certainly more chip area. The chip
would also require 32 output lines for the LE’s going to 32 different block
chips. As chip area increases so does its cost to fabricate. Another reason a big
chip area or even an additional chip is a negative quality is that these chips
will eventually be implanted into the visual cortex, and in case of implants,
the smaller they are the more invisible they are to the user. Hence designing
the next generation stimulator requires investigating new PC communication

technologies, some of which are discussed in section 3.2.

3.2 ALTERNATIVE COMMUNICATION LINKS
It is clear that to design a stimulator system that is easy to use and program is the

basis on which it will be accepted widely or not. To do so, the PCI bus based systems



36

need to be re-evaluated. One important factor of doing so, besides the above-mentioned
technological hurdles, is the cost of these commercial off-the-shelf solutions. To reduce
cost, one must consider the latest communication links that are standard with PC’s today.
These are the USB, Firewire, parallel port and the serial port. These solutions are not
expensive as they are already proven communication techniques that have are a number
of compatible devices on the market. The parallel port and the serial port are not good
solutions for our problem, as they are slow and new generation neuroprosthetic chips
require a lot of information at high speed to generate complex waveforms for stimulation.
The other two solutions are firewire and the USB. Firewire is a good solution with up to
400 Mbps of data transfer speed. Firewire was rejected for our solution due to the fact
that there are no freely available IP cores. A freely available USB IP core was found and
was the main motivation of using the USB communication link instead of the firewire

link. A brief description of the advantages of the USB is discussed in section 3.3

3.3 ADVANTAGES OF THE USB

One of the most important reason the USB was chosen for this research was the fact
that all PC’s today have USB ports available. The other important reason is that a readily
available, open source implementation of USB in Verilog RTL was available for use.
Using an open source IP core for the USB, reduced the amount of time required for initial
development, as compared to designing a USB IP core from the ground up. It also
provided with a previously used and tested core, which increased our confidence of

success.



37

The other technology related advantages are:

L.

II.

I1I.

IV.

VL

Speed: It supports three speeds, 1.5MBps, 12MBps and 480MBps. The
highest speed is 80MBps more than that of firewire.

Reliability: The hardware specification for drivers, receivers and cables
eliminate most noise, in addition to the specification requiring CRC checks.
Low cost: Even though USB is more complex compared to older interfaces,
the cables and connecters required are less expensive.

Availability: All PC’s developed today have USB compatible connectors.
Flexibility: USB provides for different kinds of data transfers, enabling its use
for different kinds of peripherals.

Support: Good support for developers, both software and hardware. It is also

extensively supported by almost all major operating systems.

CHAPTER 4

THE UNIVERSAL SERIAL BUS

The initial development of the USB was seeded by three motivations, namely,

connection of the PC to the telephone, ease-of-use and port expansion. Before the USB, it

was well understood that the next generation of technology lay in the merger of



38

computing and telecommunication. The traffic of human centric and machine centric data
depends on inexpensive communication links. Such a link already exists in the form of
the Internet. Due to the fact that computing and telecommunication technologies
developed in isolation to one another, an easy-to-use link between the two was needed.
The USB was devised as the answer. To make it easy to use, the USB was designed to be
plug-and-play. This was made possible by developing a large number of application and
systems software for everyday electronic equipment like digital cameras, mice, keyboards
etc. The extensive availability of an additional PC port enabled the explosive rise in USB
compatible computer peripherals.

Due to recent advances in computer processing power, PC’s are now capable of
processing a lot of data. This led to the development of USB 2.0. User applications like
digital imaging and video have demanded a higher bandwidth communication link with

the PC, thus USB 2.0 was designed to transfer data at up to 480 Mby/s.

4.1 USB ARCHITECTURAL OVERVIEW

The USB connects devices with a host. The USB interconnect is a tiered star
topology. A hub is at the center of each star and each wire segment is a point-to-point
connection between the host and hub, or a hub and a function. This topology is shown in

figure 4.1.



39

Host (Tier 1)

HUB .
— Tier 2

LD [ \‘ Tier3
L2 Lame I\ miers
S e I\ s

/ \ \ Tier 6
/ Lo ]\ Tier7

Figure 4.1. USB Topology.

Due to the timing constraints allowed to hub’s and cable propagation times, a
maximum of 7 tiers are allowed. In these 7 tiers, a maximum of 5 non-root hubs are
allowed. In tier 7 only functions can be allowed. In a USB system there can only be one
host. The USB interface in the host computer is called the host controller. A root hub is
integrated within the host system to provide one or more USB port attachment points.
USB devices fall into two categories: hub’s that provide additional attachment points for
other USB devices, and functions, which provide capabilities to the computer system.

USB devices conform to certain standards defined by the USB specification, namely
their comprehension of the USB protocol, their response to standard USB operations such
as configuration and reset. USB transactions take place on a 4-wire cable. The cable wire

specification is shown in figure 4.2.



40

LV, D+

GND

Figure 4.2. USB Cable.

There are three data rates available for USB transfers. High signaling rate is 480
Mby/s, full speed rate is 12 Mb/p and a limited capability low-speed signaling mode is also
defined at 1.5 Mb/s. USB 2.0 host controllers and hubs provide capabilities so that full-
speed and low-speed data is transmitted at high speed between the host controller and the
hub, but transmitted at full or low-speed between the hub and the full-speed or low-speed
device. Having this capability minimizes the impact that full-speed and low-speed
devices have on the bandwidth available for high-speed devices. This is obvious from the

fact that data travels at full or low speed on when absolutely necessary.

There are two ways in which USB devices can be powered. USB devices can be bus
powered or self-powered. Bus-powered devices draw power from the power lines
provided in the USB cable, as shown in figure 4.2. The power available for each USB
port is limited to about 500mA, thus all the bus-powered devices cannot draw more than
500mA of current. If more devices need to be connected, they need to be self-powered.
Such devices usually are wall-plug-in voltage regulators or battery powered systems.

The USB is a polled bus, i.e., the host controller initiates all data transfers. Most bus
transfers comprise of up to three packets. The host controller sends a USB packet
describing the type and direction of the transaction, the USB device address and endpoint
number. This packet is called the token packet. The addressed USB device decodes the

information in the setup packet and either waits for the next stage or initiates the next



41

stage itself, depending on the direction of the data transfer. This stage is also known as
the data stage. The source of the data, as specified by the setup packet starts the transfer.
The destination responds to the data stage by sending an acknowledgement, stating
whether or not the transfer was successful.

The USB data transfer model between a source and destination on the host and an
endpoint on a device is referred to as a pipe. There are two types of pipes: stream and
message. Pipes have associated data bandwidth, transfer type and endpoint characteristics
like directionality and buffer sizes. An endpoint can be considered as a source or a user of
information/data. For instance, a simple USB device like a flash drive has a minimum of
2 endpoints. One endpoint acts as a sink, i.e., it accepts data from the host computer and
stores it on flash memory. Another endpoint acts as a source, i.e., it sends data to the host
computer. Each endpoint has its own pipe associated with it. Most pipes come into
existence when a device is connected to a host computer. One message pipe called the
Default Control Pipe always exists once a device is powered, in order to provide access to

the device’s configuration, status and control information.

4.2 USB TRANSFER TYPES

There are four data transfer types supported by the USB: control, bulk, interrupt and

isochronous.

L. Control Transfers: Control transfers have two uses. They are used to
facilitate transfers specified by the USB specification and used by the host to
learn about and configure devices, and to carry requests defined by a class or
vendor for any other purpose.

Every device is required by the USB specification to support control transfers
over the default pipe at endpoint 0. As discussed above, each transfer consists

of three stages: Setup, Data (optional) and the Status stages. A stage could



42

consist of one or more than one transactions. At minimum every control
transfer must have a Setup and Status stage. The use of the data stage depends
on the kind of requests by the host or the device. All control transfers require
that all information flow in both directions, the control pipe used both IN and
OUT addresses of the endpoint 0. An IN transaction means that information
travels from the device to the host, and an OUT transaction means that
information travels from the host to the device. On other words all
transactions are looked at from the host’s perspective. In control read transfer
the data in the Data stage travels from the device to the host and in a control
write transfer, the data in the Data stage travels from the host to the device.

The token packet contains a PID that identifies the transfer as a control
transfer. The data transfer contains information about the request, including
request number. The USB specification defines 11 standard requests.
Successful enumeration requires specific responses to these requests.
Enumeration is discussed in detail in section 4.3.

The data size for control transfers can vary according to speed. Low-speed
devices can have a maximum data size of 8-bytes. For full-speed the size
could be 8, 16, 32 or 64 bytes. For high-speed the maximum data size must be
64-bytes.

The host makes its best effort to ensure that all control transfers get
through as quickly as possible. The host reserves a portion of bandwidth
specifically for control transfers: 10% for low and full-speed and 20% for
high-speed transfers.

If a device does not return an expected handshake packet during a control

transfer, the host tries again two times. If after a total of three tries no



II.

43

response is received, the host notifies the software that requested the transfer

and stops communicating with the endpoint until the problem is solved.

Bulk Transfers: Bulk transfers are used for transferring data when timing is
not critical. Such a transfer can send large amounts of data without clogging
the bus, because transfers defer to other transfer types and wait for bulk
transfers until bandwidth is available. However, if there are no other pending
transfer types, bulk transfers are the fastest.

Only full and high-speed devices can do bulk transfers. A bulk transfer
consists of one or more IN or OUT transaction. Since a transfer’s transaction
must be all IN or all OUT, transferring data in both directions requires a
separate pipe and transfer for each direction.

A full-speed bulk transfer can have a maximum packet size of 8, 16, 32, or
64-bytes. For high-speed a maximum of 512 bytes is allowed. The host reads
the maximum supported size during enumeration. If the amount of data is
more than the maximum allowed, then the data transaction is broken down
into multiple data packets.

The host controller guarantees that bulk transfers will eventually complete,
but does not reserve any bandwidth for them. Control transfers are guaranteed
10% bandwidth for low and full speeds and 20% for high-speed transfers.
Interrupt and isochronous transfers use the rest of the bandwidth. Hence if a
bus is very busy, a bulk transfer may take very long. If there are no devices
that use interrupt or isochronous transfers, connected to the bus, bulk transfers
are completed very quickly.

Bulk transfers use error detection, hence they are used in applications

where transfer of correct data is required. If the device does not return an



III.

IV.

44

expected handshake packet, the host tries up to two times more. Bulk transfers
are designed in such a way that ensures that no data is lost. While they do not
have any error correcting facility, they require that erroneous data be

transmitted again till there are no errors.

Interrupt Transfers: Interrupt transfers are useful when data has to transfer
within a specific amount of time. Typical applications are keyboards, mice
and other human interface devices. The bandwidth available for interrupt
transfers is limited for low and full-speed devices, but high-speed increases
the limits and enables an interrupt endpoint almost 400 times as much data as
full-speed. For low-speed devices, the maximum packet size can be any value
from 1 to 8 bytes. For full-speed, the maximum packet size can range from 1

to 64-bytes. For high-speed the range is 1 to 1,024-bytes.

Isochronous Transfers: Isochronous transfers are streaming, real-time
transfers that are useful when data must arrive at a constant rate, or by a
specific time and occasional errors can be tolerated. At full-speed,
isochronous transfers can transfer more data than interrupt transfers, but there
is not provision for re-transmission of data received with errors.

Examples of uses for isochronous transfers include encoded voice and
music to be played in real-time. Unlike with bulk transfers, once an
isochronous transfer begins, the host guarantees that the time will be
available to send data at a constant rate, so the completion time is predictable.

Only full and high-speed devices can do isochronous transfers. Devices
are not required to support isochronous transfers, but certain device classes do

require isochronous data transfers.



45

For full-speed endpoints, the maximum packet size can range from 0 to
1,023-bytes. High-speed endpoints can have a maximum packet size up to

1, 024-bytes.

4.3 USB ENUMERATION

Before applications can communicate with a device, the host needs to learn about a
device and assign it a device driver. Enumeration is the initial exchange of information
between the host and the device, and is the process by which the host learns more about
the device. The enumeration process includes, assigning an address to the device, reading
data structures from the device, assigning and loading a device driver, selecting a
configuration from the available options. Once this is done, the device is configured and
ready to transfer data using any of the endpoints specified in its configuration descriptors.

During the enumeration process a device moves through different device states as

defined by the specification: Powered, Default, Address and Configured. The steps
described below are a typical sequence of events that occur during enumeration.

1. The user plugs a device into a USB port: This puts the device in the powered
state.

2. The hub detects the device: The hub monitors the voltages on the signal lines of
each port. Every USB device has a 15Kohm pull down resistor on either the D+ or
the D- line. If the hub detects a pull down resistor on the D+ line, the device is
full-speed device, if the pull down resistor is on line D- then the device is
configured as a low-speed device.

3. The host learns of the new device: Each hub reports events on its ports to the
host. When the host learns of an event, it sends the hub a Get_port_status request

to find out more about the port.



46

. The hub detects the speed of the device: The hub looks at the signal lines to
determine what the speed of the device is, as described above.

. The hub resets the device: After the speed is detected, the host asks the hub to
reset the device. This is done by placing the D+ and D- lines at logic low.
Normally the logic lines have opposite states, they are required to be placed at
logic low to reset the device.

. The host learns if a full-speed device supports high-speed: Detecting whether a
device supports high-speed uses two special signal states. In the chirp J state, the
D+ line is driven and in the chirp K state, the D- line only is driven. During reset a
device that supports high speed sends a chirp K. A high-speed hub responds with
alternating chirp K’s and J’s. When the device detects the pattern KJKJKJ, it
removes its full-speed pull-up and performs all transfers at high-speed. If the hub
does not respond to the device’s chirp K, the device communicates at full-speed.
Due to this reason all high-speed devices must be able to communicate at full-
speed. For instance, if the hub does not support high-speed, a high-speed device
should still be able to communicate with the host PC in full-speed mode.

. The hub establishes a signal path between the device and the bus: The host
asks the hub to remove the device from the reset state to the default state. The
USB registers are in their reset states and are ready to accept control transfers
over the default pipe at endpoint 0. The device can now communicate with the
host using the default address 00h.

. The host sends a Get_Descriptor request: The host requests the device to send
it the device descriptor. This basically tells the host about how the host must
communicate with the device, for the duration of the enumeration process. All

types of descriptors are discussed in section 4.4.



47

9. The host assigns an address: The host assigns a unique address to the device.
The address assigned earlier is a temporary address given to every new device
being enumerated.

10. The host learns about the device’s abilities: The host now requests all the other
descriptors that are stored in the device. This enables the host to know how to
communicate with the device and what the device capabilities are.

11. The host assigns and loads a device driver: Once the host goes through the
descriptors, it tries to match the information in there to the information stored in
its driver information files (for Windows). Once there is a match, the operating
system, dynamically loads the driver.

12. The host’s device driver selects a configuration: Once the device driver is
loaded, it requests a configuration by sending a Set_Configuration command to
the device. The device sets the configuration provided by the command, and the

device is ready for use.

4.4 USB DESCRIPTOR TYPES

Descriptors are data structures of information that enable the host to learn more about
the device. Each descriptor contains information about either the device as a whole, or
about a specific functionality. To be compatible with the USB specification, all devices
must respond to requests for standard USB descriptors. The device, hence, must store the
information and respond to requests for the same in an expected format.

The first descriptor that is requested by the host is the device descriptor. It contains
information about the device as a whole, and specifies the number of configurations
available in the device. The configuration descriptor contains information about the
device’s use of power and the number of interfaces supported by the device. Each

interface descriptor has associated with it zero or more endpoint descriptors. After the



48

device descriptor is sent to the host, the device receives a request for the configuration
descriptor. After the host receives the configuration descriptor, it also gets to know the
total number of bytes in all the descriptors except the device descriptor. The host then
requests the configuration descriptor again, but this time it requests the device to send all
the other descriptors associated with it. Hence, all the interface and corresponding

endpoint descriptors are also sent in one request. Each descriptor type is described below.

I. Device Descriptor
Table 4.1. Device Descriptor.
Offset Field Size Description
(Decimal) (Bytes)

0 bLength 1 Descriptor size in bytes

1 bDescriptorType 1 Constant DEVICE (01h)

2 bcdUSB 2 USB spec. Rel number.

4 bDeviceClass 1 Class code

5 bDeviceSubClass 1 Subclass code

6 bDeviceProtocol 1 Protocol code

7 bPacketMaxSize 1 Max packet size for EPO

8 idVendor 2 Vendor ID

10 idProduct 2 Product ID

12 bedDevice 2 Device release number

14 iManufacturer 1 Manufacturer string
descriptor index.

15 iProduct 1 Product string descriptor
index.

16 iSerialNumber 1 Serial number string
descriptor index.

17 bNumConfigurations 1 Number of possible

configuration.

bLength: The length in bytes of the descriptor.

bDescriptorType: The constant DEVICE (01h), used for the device descriptor.



49

bcdUSB: The USB specification number to which the device and its descriptors are
compatible. For version 1.1, this value will be 0110h.

bDeviceClass: This field is for devices that belong to a class. Values from 1h to FEh
are reserved for USB defined classes. Not all devices must belong to a class.
bDeviceSubClass: This field specifies the subclass for the device.

bDeviceProtocol: This field specifies the protocol that the device complies with.
bMaxPacketSize: This is the maximum packet size of the endpoint 0.

idVendor: This is a unique ID for a particular vendor. Vendors who pay a fee, are
given a unique ID that they can use for their products. This value is also stored in the
INF file for the device. The operating system matches this value with the value
received from the device and it knows which device driver to load.

idProduct: This ID number is assigned by the device manufacturer to distinguish
between different products.

bcdDevice: This is the device release number in bcd format. This value can also be
used to decide which driver to load.

iManufacturer: This is an optional field. It points to a location, which stores string
information about the manufacturer.

iProduct: This is also an optional field. It points to a location, which stored string
information about a product.

iSerialNumber: This is the index of a string that points to the device serial number.
bNumConfigurations: This is the number of configurations the device supports. A
particular configuration defines the device’s capabilities and features. For instance, a
digital video camera may be designed to function in two modes. One mode might be
recording mode, and another might be playback mode. The camera can only be in one

mode at a particular time. Thus the features of such a camera can be divided into two



50

different configurations, which can be loaded as the user so chooses. The software

can thus function depending on which mode the camera is in.

IL. Configuration Descriptor

Table 4.2. Configuration Descriptor.

Offset
(Decimal)

0
1

2

Field

bLength
bDescriptorType

wTotalLength
bNumlInterfaces
bConfigurationValue
iConfiguration

bmA_ttributes
MaxPower

Size
(bytes)

1
1

2

—_

Offset
(Decimal)

Descriptor size in bytes.
Constant CONFIGURATION (02h)

Size of all data returned for this
config in bytes

Number of interfaces the
configuration supports.

Identifier for Set_Configuration and
Get_Configuration requests.

Index of string descriptor for
configuration.

Self power/bus power settings.

Bus power requirements.

bLength: The length in bytes of the descriptor.

bDescriptorType: The constant configuration (02h).

wTotalLength: The number of data bytes that the descriptor returns, including all the

interface and associated endpoint descriptors.

bNumlInterfaces: The number of interfaces the configuration supports. The

minimum number is 1.

bConfigurationValue: Identifies the configurations for configuration requests.

Should be more than 0.



51

iConfiguration: Index to a string that describes the configuration. This field is
optional.

bmAttributes: Bit 6 = 1 if a device is self-powered. Bit 5 is 1 if the device supports
remote wakeup feature. Bits 0 through 4 should be 0 and bit 7 must be 1.

MaxPower: Specifies how much power a device requires from the USB.

III. Interface Descriptor

Table 4.3. Interface Descriptor.

Offset Field Size Description
(decimal) (bytes)
0 bLength 1 Descriptor size in bytes.
1 bDescriptorType 1 The constant Interface (04h)
2 bInterfaceNumber 1 Number identifying this interface.
3 bAlternateSetting 1 Value used to select alternate setting.
4 bNumEndpoints 1 Number of endpoints supported,
except 0.
5 bInterfaceClass 1 Class code
6 bInterfaceSubClass 1 Subclass code
7 bInterfaceProtocol 1 Protocol code
8 bInterface 1 Index of string descriptor for the
bLength: The number of bytes in tl -ipraerface.

bInterfaceNumber: This field identifies the interface. This value should be unique
for every interface. An interface controls and specifies device resources for every
feature.

bAlternateSetting: When a configuration supports multiple, mutually exclusive
interfaces, each interface must have a descriptor with the same wvalue in
bInterfaceNumber but a unique value in bAlternateSetting. Default value is 0.
bNumEndpoints: This is the number of endpoints supported by each interface.
bInterfaceClass: This field is similar to the field DeviceClass in the device

descriptor.



52

bInterfaceSubClass: This field is similar to the field bDeviceSubClass in the device
descriptor. The value is a code defined by the USB specification, if the device
conforms to a particular subclass of devices.

bInterfaceProtocol: This is similar to bDeviceProtocol. Its value should be either
user defined or should be pre-defined by the USB specification.

iInterface: This is an index to a string that describes the interface.

IV.  Endpoint Descriptor

Table 4.4. Endpoint Descriptor.

Offset Field Size Description
(decimal) (bytes)
0 bLength 1 Descriptor size in bytes.
1 bDescriptorType 1 The constant Endpoint (05h)
2 bEndpointAddress 1 Endpoint number and direction.
3 bmAttributes 1 Transfer type supported
4 wMaxPacketSize 2 Maximum packet size supported.
6 bInterval 1 Maximum latency/polling

interval/NAK rate.

bLength: The number of bytes in the descriptor.

bDescriptorType: The constant INTERFACE (04h).

bEndpointAddress: This includes the endpoint number and direction. Bits 0 through
3 are the endpoint number. Low-speed devices can have a maximum of 3 endpoints

(numbered O through 2), full and high-speed devices can have 10 (0 through 15)



53

endpoints. Bit 7 is the direction: OUT = 0, IN = 1. Bits 4, 5, and 6 are unused and
must be 0.

bmAttributes: Bits 1 and 0 specify the type of transfer the endpoint supports. 00 =
Control, 01 = Isochronous, 10 = Bulk and 11 = Interrupt. For endpoint O control
transfer type is assumed. Bits 6 and 7 must be 0. Bits 3 and 2 specify synchronization
type, 00 = no synchronization, 01 = asynchronous, 10 = adaptive and 11 =
synchronous. In most cases bits 3 and 2 are 00. Bits 5 and 4 indicate usage type: 00 =
data endpoint, 01 = feedback endpoint, 10 = implicit feedback data endpoint, 11 =
reserved. For non-isochronous endpoints bits 2 through 5 should be 0.
wMaxPacketSize: The maximum number of data bytes the endpoint can transfer in a
transaction. Bits 10 through 0 are the maximum packet size from 0 to 1024. All other
bits are set to 0.

bInterval: For full-speed bulk transfers this value is ignored. It is usually used for

interrupt and control endpoints.

The above-described descriptors are necessary and sufficient for a simple USB
device. The information in these descriptors tells the host everything there is to know
about how a device functions and how it should communicate with it. The descriptor field
values used in this project are shown in appendix B. A detailed description of choice of
transfer type based on the application specification is also provided. In addition to this, an
analysis of bandwidth usage is also done while keeping in mind the latency requirements

of the application device.



54

CHAPTER 5
THE USB STIMULATOR DEVICE

The USB stimulator device was designed to investigate the feasibility of using the
USB as a communication link between the PC and the block-chip. The system was
designed and tested successfully first in an FPGA environment. A detailed description of
the hardware prototype is given in chapter 6. This chapter provides an overview of the
logical and architectural design and implementation of the stimulator system.

The main component of the system is the USB core. This core is an open source core
and is freely available for use in research or commercial projects. It has been successfully
used in different research and commercial projects all over the world.

Most USB cores available require a direct connection with a microprocessor or a
microcontroller. This is done so that the descriptor database can be stored in ROM and
changed as needed. Embedded software is responsible for accepting and responding to
descriptor requests from the host. Using such a core increases the cost of the whole
project due to the microprocessor, in terms of economic and labor cost.

Some cores include state machines that automatically perform the function of the
microprocessor. These state machines recognize, accept and reply to descriptor requests
from the host. Such a core was used for this system. As described in section 5.1, the USB

core reproduces data transferred by the host into a parallel interface of 8-bit packets. This



55

parallel interface can then be connected to a microprocessor or custom logic to perform
the required function. A detailed architectural description of the USB core and the two

block chip interfaces is done in the following sections.

5.1 THE USB CORE
The USB core can be divided into different functional blocks. A block diagram of the

blocks and their interconnections is shown in figure 5.1.

Endpoint 0 P 1 UTMI USB
FIFO IN rotoco

& <:> <:> Interface <:> PHY
Endpoint 0 Layer

FIFO OUT ﬂ ﬁ
USB 1.1
Transceiver

Controller
ROM USB Port

Figure 5.1. The USB Core Functional Blocks.

The USB 1.1 transceiver used for the system was a commercially manufactured IC
chip. The USB port used was a standard type A connector. All the other blocks have been
implemented in Verilog HDL. Some of the above blocks are top-level blocks, i.e., they
consist of more than one lower level Verilog modules. This section also describes the
overall functioning of the USB core from a data-flow perspective.

During enumeration, the host communicates with the USB device and receives the
stored descriptors. Prior to compilation of the Verilog code for the core, the ROM module

is initialized with descriptor attributes as described in chapter 4. The actual attribute



56

values that were used are stated and explained later in this section. When the device
receives a descriptor request from the host, the protocol layer wverifies protocol
compliance. Once the data has been decoded, it is forwarded to the controller module.
This module responds to the descriptor request, by reading the descriptors from the
ROM. Once all the descriptors have been read and the operating system has assigned a
driver, the device is ready to receive data from the host. When the host sends the device a
data packet, the protocol layer decodes the data packet and also decodes the destination
information. If the data packet is meant for endpoint 1, the data is forwarded to the
endpoint 1 FIFO. Once the packet is stored in the endpoint FIFO, it can then be read by
the function. The signals that facilitate the writing of data packets to the FIFO are the 8
data lines, 1 write enable line and 1 FIFO full line. Data is received in 1-byte words. The

timing diagram of a data transfer is shown in figure 5.2.

8-bit Data ><.Da!.ala.h.d.><

Write Enable

Figure 5.2. Endpoint Data Transfer Timing Diagram.

For a data packet with 8-bytes of data, the USB core outputs 8-bits of data eight times
to completely store the 8-byte data packet into the FIFO. The timing diagram for an 8-

byte packet is shown in figure 5.3.

8-bit Data ><DO><Dl><D2><D3><D4><D5><D6><D7><
wieawis 1 1 1111 [ J]

Figure 5.3. Timing Diagram for 8-Byte Data Packet.




57

Figure 5.4 shows the actual waveform that is seen in a logic analyzer. The signal lines
shown are for Data, endpoint 1 read enable, clock, endpoint 1 write enable, empty and

full signals.

( ﬁnalgzer]( HWavefarm MACHINE 1 ] (ﬁcq. Enntrnl] (Eance]] ( Run ]
(2PT2_Jw - oo
D - 00 Screen

Delay Harkers % oto 0 Trig to ¥ Trig to 0
2.385 us Time 0 s 4,771 us 4,771 us

Accumulate
off

e -
secs/Div
500 ns

oAt o . '

paTA 1| ] | —

AR e a—

DaTA 3

paTA 4

DATA 5|7 ]

DaTa 6] B

pATA 7| | |

EP1RE : —

CLK

TXOE ;

EF1HE | I | | | | | I

EMPTY | | | | [ [ U |

FULL ;
ey i

Figure 5.4. Logic Analyzer Waveform.

The system was initially implemented and tested on a customized FPGA development

board. The electrical specifications and diagrams are discussed in chapter 6.

5.2 USB-BLOCK CHIP INTERFACE

This interface was designed to be compatible with the timing diagram discussed in
section 3.1, and shown in figure 3.3. The interface has four lines: DCLK, DIN, TCLK
and LE, as described by the block chip specification in section 3.1. A partial listing of the

Verilog HDL code for this interface is given in appendix A.



58

The interface was designed to control a single block chip. Using a single block chip
simplified the implementation and testing of the initial version. The entire interface was
downloaded to an FPGA with the four block chip compatible lines. A block diagram of
the overall system is shown in figure 6.1.

The system used 2 FPGA’s for its implementation. One FPGA was configured with
the USB core. The second FPGA was configured as the USB-Block chip interface. This
system consisted of only one endpoint. This endpoint was in the form of an 8-byte FIFO.
The timing and functional specification of this endpoint 1 FIFO is the same as the
endpoint 0 FIFO described in section 5.1. As shown in figure 5.4, there are 8 writes to a
FIFO in a data packet. After each write, the interface controller is designed to read in the
written byte. Due to a design limitation in the USB core, the controller was designed not
to let the FIFO become full. If the FIFO becomes full, the USB core goes into an infinite
loop, i.e., it writes the same 8-byte data to the FIFO. This sequence of writes and reads
can be seen in figure 5.4.

The data format for the packet is set based on whether the system supports little-
endian or big-endian. Little-endian" means that the low-order byte of the data packet is
stored in memory at the lowest address, and the high-order byte at the highest address.
Big-endian" means that the high-order byte of the number is stored in memory at the
lowest address, and the low-order byte at the highest address. The USB system as
implemented is a little-endian system. The data, as sent by the PC to the USB core is

shown in figure 5.5.



59

Word 1 (2-bytes) | | |
0000 0000 0000 0000

AD2 AD1 ADO A6 A5 A4 A3 A2 A1 A0 T3 T2 T1 TOPH
Word 2 (2-bytes) 0 0 0 111 1 111 01 0|0 010

Data sent to
the USB (0000 0000 0000 0000 1010 0010 0001 1111)2 = (41,503)10

device O 0 O 0O A 2 1 F

Figure 5.5. Interface Data Format.

In figure 5.5, the lower byte 1F is output first on the USB, and subsequently A2 and
then 00 and 00. Once the interface controller receives these bytes, the first 2 bytes are
loaded into a shift-register. Once the 16-bits of block chip data is loaded, it is shifted out.
Although the block chip requires only 2-bytes, the FIFO size for the USB core is set to 8-
bytes. There are two reasons for doing so. The first reason is to provide for enough
address space for more than 1 block chips. The stimulator system can be designed to
incorporate 16 or 32 block chips. An extra 16-bit space can be used as LE activation
fields for the block chips. For instance, if for a particular stimulation, block chips 1, 4,
and 7 are required to be stimulated with the same parameters. The first two bytes will
have the block chip data, the next 16 bits will be address mapped from LEO to LE15.
Thus for block chip 1, 4 and 7, the LE1, LE4 and LE7 bits will be asserted. The controller
then would output an LE pulse on each of the above lines at the same time. This feature,
in addition with the hold-off bit will enable simultaneous stimulation of any electrode
with the same stimulation parameters. The other advantage of having an 8-byte FIFO is

discussed in section 5.3.



60

5.3 USB-NEUROTALK INTERFACE

The NeuroTalk family of integrated chips is a new family of chips being designed at
the Illinois Institute of Technology keeping in consideration the specific needs of the
neuroscience community. The neuroscience researcher has traditionally used
commercially available integrated circuits (IC). Since these IC’s have a variety of
different applications, they are manufactured in bulk, thus providing a low cost solution
for neuroscience and other applications, both commercial and research.

Neuroscience is currently proceeding towards the study of a population of neurons,
rather than single neurons. Arrays of electrodes are being used to stimulate and record
neural signals. It is well recognized that significant advances in the field of
Neuroprosthesis will come about with the understanding of how to use large number of
electrode arrays as a two-way informational link with the brain, or with neurons
anywhere else. Due to the large number of interface channels required, the circuit
requirements for neuroscience devices are growing with respect to commercially
available components. Due to these reasons many researchers, either have to adapt, or to
make a compromise in order to use commercially available components. To solve this
problem, the NeuroTalk interface was designed and the first block chip that supports such
an interface was fabricated. For this research, a USB-NeuroTalk interface was designed
that converts USB data received, into NeuroTalk compatible instruction stream. This
instruction stream is then sent to a NeuroTalk compatible block chip for processing and
execution. A description of the NeuroTalk interface is described and a timing diagram is

shown in figure 5.6.

DCLK

TAG

DATA X Do XD1 X D2 X D3 X D4 X D5 X D6




61

Figure 5.6. NeuroTalk Bus Timing.

The NeuroTalk interface consists of three signals, Dclk, Tag and the Data signal. The
Dclk is the data clock using which the data is shifted into the block chip. The Tag signal
is used as a reset signal. In the above timing diagram, we can see that the tag signal is
initially high. The next rising edge of Dclk, after the Tag goes low, clocks in the first data
bit on the 1-bit Data signal. All subsequent Data bits are read in by the block chip, as they
are transmitted from the USB-NeuroTalk interface. When the Tag signal goes high, the
shift register in the block chip is reset. Hence, Tag can be used to cancel the execution of
a particular instruction stream, once it has been loaded into the shift register.

The NeuroTalk specification calls for variable length instruction commands. Doing so
provides for multiple instructions and maximizes functionality of the block chip. The
older version of the block chip accepted only fixed-length 16-bit long instructions. Each
instruction is addressed to a single electrode channel. Having more than one instruction
can add different and advantageous functionality to the block chip. For instance, in
addition to the stimulation instruction of the old block chip, one instruction can be
designed to send the same waveform parameters to more than one channel. If we consider
the example of visual prosthesis, another kind of block chip architecture can be
considered. Biological vision is very similar to computer vision; both cases include
frames of external objects. For artificial vision, a similar two-dimensional frame buffer
can be implemented in hardware. This buffer can be designed to hold a certain number of
instructions. Different instructions can then be implemented to update and flush the
buffer, start or stop the stimulation. A number of variations can be implemented for each
of the mentioned instructions. Due to the variations and different kinds of instructions, a

large storage space is needed in the endpoint of the USB core. Using an 8-byte FIFO can



62

adequately provide for the instruction storage for the first few versions of the NeuroTalk

block chips.

5.4 USB BANDWIDTH ANALYSIS

To accurately determine the speed with which our stimulator devices can accept data,
a bandwidth analysis needs to be performed. Even though the USB core runs at 48MHz,
it does not provide data at that same rate. To guard against over- and under-flow of data,
appropriate measures must be taken. For this very reason a FIFO is used. This section
discusses the full-speed bulk transaction limits that every bulk connection adheres to.
Table 5.1 below shows the table 5-9 shown in the USB 2.0 specification document in

section 5.8.4. Note: Each frame in full-speed mode is 1ms long.

Table 5.1. Full-speed Bulk Transaction Limits.

Data Max Frame Max Bytes Bytes/frame
Payload Bandwidth Bandwidth  Transfers =~ Remaining  Useful Data
(Bytes/second) Per
Transfer
1 107,000 1% 107 2 107
2 200,000 1% 100 0 200
4 352,000 1% 88 4 352
8 568,000 1% 71 9 568
16 816,000 2% 51 21 816
32 1,056,000 3% 33 15 1,056
64 1,216,000 5% 19 37 1,216
Max 1,500,000 1,500

For a payload of 8-bytes, the maximum transfers allowed are 71. Thus the total
number of bytes that are transferred per frame are 71 x 8 = 568-bytes. 568,000 bytes are
transferred every second (568 x 1,000 = 568,000). If only 2 out of the 8-bytes are used,

about 71 x 2 = 142 useful bytes are transferred per frame (1ms), and 142,000 useful bytes



63

are transferred per second. On a per-second timeline, only about (142/568 x 100 = 25%)
25% of the bandwidth is used.

For this research, a FIFO of 8-bytes was used, as described above. The extra 6-bytes
are used as an extra buffer for the USB-NeuroTalk interface which has a largest
instruction size of 26-bits. The extra 6-bytes can also be useful for instruction set

upgrades in future versions of the NeuroTalk interface.

CHAPTER 6
FPGA PROTOTYPE DESIGN

The prototype was initially verified and validated on a custom designed FPGA board.
The FPGA board was designed to accommodate two ALTERA FLEX 10K FPGA chips.
One FPGA was configured with the USB core, after being configured with the required
number and sizes of the endpoints. The ROM, which was also a part of the USB core,
was initialized with the appropriate descriptor values. A USB 1.1 transceiver chip from
Fairchild Semiconductors was used as the bus front-end. It ensured electrical
compatibility with the USB standard. The FPGA’s were programmed using ALTERA’s
Quartus II software. Programming circuits were designed for both FPGA’s on the
prototype boards to facilitate re-programming at any stage in development. The second
FPGA was used to program either the USB-Block chip interface or the USB-NeuroTalk
interface. This FPGA has two sets of I/O’s; one set is responsible for accepting data
packets from the USB core FPGA. The second set of signals is either block chip, or
NeuroTalk interface compatible.

FPGA programming circuits were designed and added to the prototype board to

program the FPGA’s. FPGA’s can be programmed in two different ways. One way is to



64

use a programming cable for each re-programming; the second option is to store the
programming information in an EEPROM. The option of using EEPROM to store
programming information was not used since developing the prototype required
constantly modifying the design and re-programming the FPGA’s. Hence during initial
development, to simplify the hardware, the cable programming method was employed. A

block diagram of the prototype board is shown in figure 6.1.

Power Supply >
" v Block
L FPGA1 FPGA?2
USB L N| USB1l1 USBCORE | N| Block chip/
Cable\——/| Transceiver <:> ——] NeuroTalk :l> Chip
Interface

\ 4

I i}

48 MHz FPGA FPGA
»  Crystal Program Program
Circuit Sub-Circuit Sub-Circuit

U

Y A

Programming
Cable Sockets

Figure 6.1. Prototype Board Block Diagram.

The figure in 6.1 provides an overview of the prototype system developed. A brief

description of each block is provided below.

Power Supply: The power supply was designed to supply power to the USB transceiver;
the two FPGA’s and programming sub-circuits, the crystal circuit, and the Block chip.

The transceiver and the FPGA programming circuits required a power supply of 3.3



65

volts. This was achieved using the LM317 adjustable voltage regulator. The circuit

diagram and component values are shown in figure 6.2.

v, O LM317 O V,

pag

\Y
Figure 6.2. Adjustable Voltage Regulator.

The equation used to set the output voltage by varying R2 is shown below. Resistor

R1 is set to 240 2 . The equation for V,is (V. is 1.25 Volts):

R
\/o:\/ref(1 + Ri )

For a V, of 3.3 volts, R2 = 393.6 Ohms or approximately 400 Ohms. The FPGA’s,

along with an I/O voltage supply of 3.3 V, require a core voltage of 2.5 Volts. To achieve



66

2.5 Volts the value of R2 is required to be 240 Ohms. The block chip requires two
different voltage levels. It requires 5 Volts for V.. and for Vinpir, and 10 Volts for the
high voltage supply Vuy. The Vuy was derived using a 10 Volt zener diode and the two 5
Volt supplies were powered by one 7805, 5 Volt regulated power supply.

The crystal oscillator was powered using another 7805-voltage regulator to supply the

required 5 Volts.

48 MHz Crystal Circuit: The clock generation circuit was designed using a 48 MHz
crystal, a 5K-Ohm resistor and a 10pF and 15pF capacitor. The clock was generated

using a HEX inverter IC. The circuit is shown in figure 6.3.

| | O ck

H(Omn[} [ ] asmmz

§ o

15pF
Figure 6.3. Clock Generation Circuit.

\Y

The circuit designed above, generated a clock of 48MHz that was required by the USB

core to sample and decode the USB signals coming from the PC.

FPGA1 (USB Core): The FPGA’s have a total of 144 pins, including power,
configuration and I/0O pins. The six front-end pins of the USB core were connected to the

transceiver. These pins conformed to the standard USB transceiver specification. Eight



67

data signals, one write enable (Wen) signal and one FIFO full signal were the outputs to

the interface FPGAZ2. Figure 6.4 shows the various connections.

USB

Txver

8 Data

USB Core

Lines [

Wen

[

FPGA1

FIFO
Full

Interface
Logic

FPGA 2

Figure 6.4. USB Core Input/Output Connections.

FPGAZ2 (Block chip/NeuroTalk Interface): The Interface FPGA, as shown in figure 6.4

had 10 I/O lines on its front-end and 4 I/O lines on its back-end (Block chip side) as

shown in figure 6.5.

USB Core

FPGA 1

8 Data
Lines
:> Interface
Logic
Wen
FIFO FPGA 2
P Full

Figure 6.5. Interface Core Input/Output Connections.

TCLK
DCLK
DATA
LE
TAG

FPGA Program Circuit: The FPGA’s were programmed using the ByteBlaster parallel

port download cable as described by the Altera programming data sheet. Table 6.1 shows

the ByteBlaster 25-pin header pin-outs.



68

Table 6.1. ByteBlaster 25-Pin Header Pin-Outs.

Pin Signal Name

2 DCLK
3 NCONFIG
8 DATAO

11 CONF_DONE
13 NSTATUS

15 GND

18-25 GND

The 25-pin header plugs into the LPT/Parallel port of the PC. The other end of the
cable has a 10-pin female header, which has pin connections shown in table 6.2. The
programming circuit must provide VCC and GND to the cable at the appropriate pins
shown in table 6.2.

Table 6.2. ByteBlaster Female 10-Pin Header Pin-Outs.

Pin Signal Name Description
1 DCLK Clock Signal

2 GND Signal Ground
3 CONFIG_DONE Configuration
4 VCC Power Supply
5 nCONFIG Configuration
6 NC No Connect

7 nSTATUS Configuration Status
8 NC No Connect

9 DATAO Data to Device
10 GND Signal Ground

The ByteBlaster schematic diagram is shown in figure 6.6. It shows an octal driver IC
that is required to configure the FPGA’s. The 10-pin female header plugs into the circuit
board and the 25-pin end plugs into the PC and is sent configuration data by the Quartus

II software.



25-Pin Male Header 10-Pin Plug
Connections Connections
vee
— 14
<3
<17
74HC244
%7_ vCC
y GND 1G VCC T
D 2G GND
L g 1Al 1Y1 R5—
| — 1A2 1Y2 ]
2 ry |1A3 1Y3 \V
[ 1A4 1Y4 GND Re
— 2A1 2Y1
2A2 2Y?2 RE
8 2A3 2y3 L1 <19
— 2A4 ov4 R{__1 g é
9 —
o>—
R3
7
> 2,10
D& %7—<:|
12
>
11
>
13
>
15
o
[—
18-25 V GND

Figure 6.6. ByteBlaster Download Cable Schematic.

6.1 USB-BLOCK CHIP INTERFACE

69

The USB-Block chip interface was implemented using Verilog HDL. The interface

has all the signals specified in the block chip specification document. The functioning of



70

the block chip interface depends on the DCLK. The interface shifts out the block chip
instruction to the block chip for execution. This requires the interface to output each bit
out of the 2-byte instruction, one at a time. Completely transferring the 16-bits requires
16 DCLK cycles as the DCLK is used by the block chip to read in the data in its shift
register. After successfully shifting out the data, the interface outputs a 200ns long LE
pulse, 200ns after the shifting out of the last bit. Hence the total time taken for one
complete transfer to take place is 16 * (1 DCLK cycle time) + 200ns + 200ns. The DCLK
frequency used for the device is about 2.4MHz. Each cycle will thus be 416.6ns long. So,
one complete instruction transfer will take place in 7.066 #s. Using this time
information, a verilog module that counts each DCLK cycle was designed. Depending on
what the state of the interface is, the interface will decide on when an LE pulse needs to
be output. Once the transfer is complete, the time counter resets itself and waits for the

next instruction to be transferred.

WI_en DIN
> 8-bit > [ per
E int 1 lock |
8-bit ndpoint | Data Eé ﬁicp |
Data |:> FIFO g L Interface L
r_en
Block Chip Inf lagram.

Figure 6.7 shows the block diagram for the block chip interface logic. The write
enable signal is used as an input to both the FIFO and the interface block. As each byte of

data comes in, it is used by the interface and prepared to be sent to the block chip serially.



71

6.2 USB-NEUROTALK INTERFACE

After the successful testing of the USB-Block chip interface, the neurotalk interface
was designed to interface with the USB. Although it had certain similarities with the
block chip interface, it took considerably less time to design due to the fact that the
interface to the USB core had already been studied extensively while designing the USB-
block chip interface. While the USB-block chip interface took about 16 weeks to design
and implement, it took only about 1 week to design, implement, test and debug the USB-
Neurotalk interface. Out of the 16 weeks for the block chip interface, it took 4 weeks to
design the FPGA development board, and 12 weeks to learn the inner functioning of the

USB core.

6.3 FPGA DEVELOPMENT BOARD

The FPGA development board was custom designed without the use of a printed
circuit board. The general layout of the board is shown in figure 6.1. A photograph of the
board is shown in figure 6.11. The board used two TQFP sockets for the two FPGA’s and
a QFN socket for the USB 1.1 transceiver. Each of the two FPGA’s required two

different power supplies of 2.5 volts and 3.3 volts. The board also has a block chip DIP-

40 socket.
Clock
. Generation
Tranceiver Circuit
FPGA Power FPGA 1 FPGA 2

/v



72

.
44 e 0 eeenas ol Glalee

ERC
Sr e e o

T 50 5SS 0S

¥ . . .
e AR Programming Circuits

Figure 6.8. Photograph of the FPGA Development Board.

6.4 DEVICE DRIVER AND APPLICATION

The Microsoft device driver development kit has sample device drivers available for use.
One of these drivers was a bulk endpoint compatible driver and was used for this
research. Along with the driver, a sample application was available that was modified to

send block chip compatible data to the device.



73

CHAPTER 7
USB-INTERFACE SYSTEM TESTING
The complete system was tested in three stages. The first stage involved testing the
FPGA development board since it had five different sub-circuits. The power, two FPGA
programming, clock generation and block chip circuits were tested and their nominal
performance verified. The second stage involved testing the USB core and verifying that
it actually functioned as stated by the designer. The third stage involved testing of the
complete system including both the interfaces. Each of the three-stage testing

methodologies is described in the following sections and test results of each are shown.

7.1 FPGA BOARD DESIGN AND TESTING

The FPGA board was custom designed without the use of manufactured PCB’s. This
method was used for the initial prototype due to the fact that it is very difficult to modify
PCB traces in case if even a simple modification is required. Even though the
modification is simple, implementing a complex system is tedious work due to the fact
that the FPGA socket and the transceiver socket pins were small. Hence magnet wire was
used to make the necessary logic line connections under a microscope. Making the
necessary connections and verifying them required that the connections be viewed under
the microscope. For the power circuits, a higher gauge wire was used. Once all the
power, clock and programming circuits were built, an FPGA was inserted in one of the
sockets and tested for programmability. Initially program configuration failed. It was
later discovered that the power pins for each of the four banks of the FPGA need to be
powered for the FPGA to program and function correctly, even if one or more sides are
not used. Once the FPGA was fully powered, the FPGA configured successfully. Once

the general circuit connections for one FPGA were verified and validated, the circuit



74

connections were replicated for the second FPGA. A photograph of the circuit

connections for the FPGA board is shown in figure 7.1.

i _ L
e e )

Figure 7.1. Photograph of underside of FPGA Prototype Board.

7.2 USB CORE TESTING AND VERIFICATION

The USB core chosen was obtained from www.opencores.org, and since it was

obtained in open source form, it lacked detailed documentation. The top-level verilog

module consists of endpoint I/O’s, pins for the USB 1.1 transceiver and other status

signals. The transceiver and USB core interface circuit is shown in figure 7.2.

OE*
Vs RCV

VPO
VMO

tx_oe
rx_d

rx_dp
rx_dn
tx_dp
tx_dn
mode

| BSit data

wr_en



http://www.opencores.org/

75

<—

_—
L D p. 24Q > - »
— b* 24 —— FmptY
GND — Full

Figure 7.2. Circuit Diagram of Transceiver and USB Interface.

According to the overall design of the USB core, the 8-bit data bus shown in figure
7.2, the write enable, wr_en signal, the empty and full signals play a part in the data
transmission. Once the USB receives a data packet from the PC, it is decoded according
to the USB specifications and forwarded to the OUT endpoint FIFO through the 8-bit
data bus. In the USB system, initially, there were two unknowns. It was not known which
driver could be used for the device. The other unknown was whether or not the USB core
functioned properly as it was implemented. To increase the chances of the device
functioning, one unknown had to be removed. The obvious choice was the
driver/application to be used. A few USB debug applications were installed to test the
device. It was assumed that these devices had the requisite generic drivers that would
enable the PC to successfully communicate with the USB core, provided the core was
implemented correctly.

Once a data packet successfully arrives at the core, it is then placed on the data bus 8-
bits at a time. When each byte is valid on the bus, a pulse is sent on the write enable
signal. The byte is then written into the OUT endpoint FIFO. Once the complete packet is
written, or even before it is written, the data can be used by the endpoint function. One
test strategy was to monitor the eight data lines and the write enable lines to ascertain the
arrival of the data packet at the USB core. As stated above, while conducting the test, it

was assumed that the PC was correctly sending the data to the USB device.



76

Initially when the device was powered up and connected to the PC, the Windows
operating system did not acknowledge the addition of the device to the USB bus. Tests
were run using a USB configuration snooping software, and it was discovered that the
device was not completing the enumeration process, as it should to be recognized by the
PC. When a device is first connected to a USB port, the PC sends a particular sequence of
commands to the device, and it expects a reply to each of the three commands it sends. If
for any reason this query and reply session fails, the device enumeration fails and the PC
does not recognize the device. This is what the symptoms were in the case of the USB
device. Hence it was hypothesized that the device is not being recognized due to some
failure in the enumeration process. To trace the problem, a logic analyzer was hooked to
certain test points on the FPGA that tracked the requests and replies flowing between the
USB core and the PC. Since the core had two FIFO’s, one each for the PC requests and
the core replies, it was fairly simple to setup the test. The data acquired by the test is

reproduced below in figure 7.3.

Packet 1 from PC Host

Byte 1: A5: Start of Frame Byte 8: 80: bmRequestType
Byte 2: EC: Frame # + Byte 9:06: bRequest

Byte 3: 9C: CRC5 Byte 10: 00: descriptor type
Byte 4: 2D:_Setup Byte 11: 01: descriptor index
Byte 5: 00 }Addr.+Endp.+ Byte 12: 00: windex high
Byte 6: 10 J CRC5 Byte 13: 00: windex low
Byte 7: C3: Data PID Byte 14: 40: wLength high

Byte 15: 00: wLength low
Byte 16: DD: CRC16
Byte 17: 94: CRC16



77

Reply from Device to PC

Byte 1: 4B: Data PID Byte 11: 34:
Byte 2: 00: «——Should be 12, byte-3  Byte 12: 12:
Byte 3: 12: Byte 13: 78:
Byte 4: 01: Byte 14: 56: | Bytes 10 to 18 of
Byte 5: 10: | Bytes 1to 9 of Byte 15: 01: >Device descriptor
Byte 6: 01: | Device descriptor Byte 16: 00:
Byte 7: 00: > Byte 17: 00:
Byte 8: 00: Byte 18: 00:
Byte 9: 00: Byte 19: DE:
Byte 10: 40 Byte 20: D2:/CRC16

J Byte 21: 00: CRC16

Figure 7.3. Enumeration Failure Test Results.

The test as described above was successful in locating the source of the enumeration
failure. The problem was due to an extra byte that was added on the reply by the USB
device. This extra byte had all bits set to 0, as can be seen in figure 7.3. Although, the
problem was known, locating the source took a considerable amount of time since the
inner code of the USB core needed to be looked at and studies, without any formal
documentation. After about 3 weeks of intense search, the source of the problem was
positively identified and eliminated.

In the initial phase of device development, Altera’s MAXPLUS II software was used.
In the USB core, four FIFO’s were implemented. Two FIFO’s were used for the control
endpoint, one each for IN and OUT endpoints. Another FIFO was used for OUT endpoint
1. The forth FIFO was a smaller FIFO used as a pre-fetch FIFO for enumeration. To
successfully compile the USB core in MAXPLUS, certain changes were made to the
FIFO’s. The endpoint FIFO’s were instantiated using library SRAM modules provided by
MAXPLUS. The smaller pre-fetch FIFO, however, was implemented by using the reg
keyword available in Verilog. MAXPLUS, did not synthesize an SRAM using the reg

keyword because this feature was not supported in that particular version. The



78

implementation for the smaller FIFO was then changed to make use of the library SRAM
modules. After the change, the complete USB core successfully compiled without any
syntax errors, and work continued on implementing the USB-block chip interface. During
this initial phase, the PC on which the core development was being done had to be
replaced with another. This required installing the software on the new machine. By then
Altera had phased out the older MAXPLUS software and required developers to
download and install an upgraded version of the software with better features and
advanced options, called Quartus. Once the installation was done development went on
without incident. The cause of the enumeration failure, it was discovered, was the change
done in the implementation of the smaller pre-fetch FIFO. As designed, the USB core
was supposed to have the FIFO functioning with unregistered outputs. In other words, as
soon as the first byte is stored in the FIFO, it appears on the output pins, i.e. it did not
require a positive edge of the read clock for the data to appear on the output. The default
setting of the library function, however, set the FIFO to function in the registered mode,
i.e., when the first byte is entered into the FIFO, it appears on the output lines only after
the rising edge of the read clock. It was due to this reason, an additional 0-byte was being
appended to the reply to the PC. Setting the FIFO to function with unregistered outputs
then solved the problem. Apart from this there was no other problem with the USB core

as it was implemented.



79

7.3 INTERFACE TESTING AND VERIFICATION

The only problem encountered while designing the interface what that of clock jitter.
The DCLK and TCLK used by the block chip were derived from the main 48MHz clock.
The main clock was observed to jitter, when viewed on a logic analyzer. This jitter was
hence also induced in the DCLK and TCLK. The source of the problem on the derived

clocks and a solution is presented below. The problem is shown in figure 7.4.

e | [ UL i i

Figure 7.4. Clock Skew.

To better control and transmit DCLK and TCLK, a faster clock called FCLK was
implemented. The DCLK was initially derived from the 48MHz clock using a counter.
One cycle of the 48MHz clock is 20.83ns long. The block chip specification lists certain
minimum setup time for the DIN line. To comply with the requirements the DCLK

frequency was chosen to be 2.5MHz, with one cycle 0.4 ¢ s long. This means that there

0.4us _ ~ . .
are S o~ = 19.2 ~20 main clock cycles in each DCLK cycle. Even though there

are 20 cycles in each DCLK cycle, we only need 10 cycle counts because DCLK is high
or low for only 10 of these cycles, and one period consists of 20 cycles. To count 10 main
clock cycles a 4-bit counter is required. Initially, DCLK is logic low and it remains low
for the first 10 increments of the counter. At the next step, DCLK’s state is changed to
logic high and the counter is reset to 0. The counter again counts to 10 and then DCLK is

set to 0. The source of the problem is shown in figure 7.5.



80

\4

0.208332 «

Figure 7.5. 48MHz clock with DCLK half-cycle timing.

Due to the jitter, each clock cycle, can be either more or less than 20.83 ns. We can
assume for simplicity in describing the problem that because of a low resolution of
measurement, each cycle of the main clock can be shorter or longer than 20.82 ns by
about +/- t,. Hence in figure above, the ten clock cycles on a worse case scenario, can be
0.208322 + (10 * tqy) or 0.208332 — (10 * tax). This means that DCLK can change state
from either a 0 or a 1, in the range stated above. This high difference in jitter will cause
the DCLK to also jitter at a high rate. To solve the problem a 5SMHz FCLK was derived

from the main clock. Each cycle of FCLK will then be 0.2 £ s long. Each FCLK cycle

0.2us

50.83ns 9.6 ~10 main clock cycles. To generate FCLK, a 3-bit counter is

will have

required. For the first 5 counts, FCLK will remain at logic 0; the counter will then be
reset to 0. For the next 5 counts FCLK will be set at logic high. Assuming the same rate
of jitter on each clock cycle, we can calculate the new range the FCLK will jitter in.
According to figure 7.6 the range will be, 0.104166 + (5 * tux) to 0.104166 — (5 * tay).
Since the total skew of 5 clock cycles is less than the skew of 10 clock cycles, the jitter of
FCLK is less than that of the main clock cycle. DCLK is derived from FCLK and not the
main clock to further reduce the jitter. Since FCLK is twice as fast as DCLK, there are

two FCLK cycles per DCLK cycle.

A
A 4

0.104166 s



81

Figure 7.6. 48MHz clock with FCLK half-cycle timing.

The DCLK jitter in the first case is +/- 10* tux. Using the FCLK to derive the DCLK
reduces this jitter. FCLK jitters in the range of +/- 5 * tu. Since DCLK is based on
FCLK, its jitter is also reduced to +/- 5 * tqx in other words, it was reduced by half. When

noticed on a logic analyzer, the jitter on DCLK was not noticeable.

0.8332 s

A

Figure 7.7. FCLK and DCLK.



82

CHAPTER 8
ASIC DESIGN FLOW

After the successful implementation, verification and validation of the interfaces and
the USB core in FPGA, the designs were prepared for fabrication in ASIC. This chapter
describes the process of preparing a proven design for layout. There are three distinct
steps in the process and are described in the following sections. The first step is synthesis
that converts Verilog logic code to a transistor level circuit. The second step converts the
transistor level circuit to a layout while conforming to a particular technology library.
The third step consists of performing design rule- and layout vs. schematic-checks. This
step guarantees that the layout generated is functionally, and electrically equal to the

transistor level schematic of the design.

8.1 SYSNTHESIS

This step converts the verilog source into its transistor level circuit. The software used
to perform synthesis on the USB and interface cores was a widely used Synopsys design
compiler. Figure 8.1 shows the steps required to convert a verilog project into its
equivalent transistor level circuit.

The project information is first entered into the compile.scr file, which is a setup file
for the synopsys design compiler. The information entered in the setup file includes;
verilog design files, top level module, output files, etc. The dc_shell command is invoked
to start the synthesis process on the design files. The screen output is written to a text file
to conveniently analyze the results of the synthesis operation. The output of the synthesis

operation is the creation of the .Isi file.



83

Includes:

. Project files.
compile.scr
P / Compile settings.

Output file extension.
dc_shell —f compile.scr > usb.txt LT~ -~
v ) ™S
top_level.lsi core.txt
ad d

Output files/

Figure 8.1. Synopsys compilation steps.

8.2 LAYOUT

The L-Edit software was used to layout the USB and interface cores. However, before
L-Edit can perform layout, the source file provided to it should be in a proper format.
Hence, the .Isi file obtained in the previous step is converted into the .tpr format to be

readable by L-Edit. This process is depicted in figure 8.2.

‘ top_level.lsi

A 4

TPR
conversio

‘ top_level.tpr

Figure 8.2. LSI to TPR conversion.

Once a tpr file is obtained, L-Edit is commanded to use that file as its input for
creating the layout of the complete chip. Once the layouts of the three chips was
obtained, the two interface cores were combined with a USB core, and the transceiver
core to create the USB-blockchip and USB-Neurotalk chips. These two layouts are
shown in figure 8.3 and 8.4.



84

Blockchip
Interface

USB 1.1 Transceiver

Test Pads

-Blockchip Core.

Figure 8.3. USB



85

Neurotalk
Interface

est Pads (8w USB 1.1 Transceiver

Flgure 8 4 USB Neurotalk Core.

8.3 DRC & LVS CHECKS

Once the complete cores were done, design rule and layout verses schematic checks
needed to be done to ensure that the synthesized cores were translated into their
respective circuit level representations without any errors. In other words, the layout
process, and the process of connecting the three layouts, should not induce any errors.
DRC is a function built into the L-Edit software and did not report any errors in the

design rules that were used. The LVS process is a little involved and is shown in figure



86

8.5. L-Edit is used to extract the transistor level circuit netlist from the layout itself. This
process creates an .spc file. In addition to the two complete cores, the three sub-
components of each core were also used to generate separate spc files. The sub-
component spc files are then used by ORCAD software to create a transistor level circuit.
These circuits are then converted into blocks and connected the same way, as in the final
layout, using ORCAD. Once the transistor level circuit for the USB-blockchip and the
USB-neurotalk interfaces are obtained, each of these is extracted into a top-level netlist
that contains not only the USB circuit, but also the interface and transceiver circuit. Once
the top-level transistor level circuit netlist is obtained, it is compared to the transistor
level netlist extracted from the layout, using a L-Edit software utility called LVS. If the
two files match, it means that the interconnection of the three cores, in layout, i.e., USB,
interface and transceiver match perfectly with the ORCAD circuit level netlist. Doing
such a check increases the confidence level in the layout interconnections, as the
interconnections in ORCAD are easy to do and the errors are more easily detected.
Figures 8.6 and 8.7 show the ORCAD circuits for the USB-Blockchip and the USB-
Neurotalk chips. These circuits were used to extract a netlist, which was compared with
the layout netlist obtained by directly extracting the combined layout of the cores, shown

in figure 8.3 and 8.4. Figure 8.5 shows the entire LVS process.

Synopsys
design compiler
|

TP£ file




USB-Block®ip USB Layout | | Txver Layout | |  Blockchip
Layout / / Interface Layout
| /
: / / 7
E L
xtract Layout UéB Interiﬁce Tx%er
Netlist Netlist Netlist
USB-Blockchip A l
Netlist
NUSB-BPlockchip
ORCAD Circuit

USB-Blockchip
ORCAD Netlist

LVYs

(To check core
interconnects)

—» Comparison Results

Figure 8.5. LVS Flow Chart.



88

&)
g

RRIRIG|R!

PD"

D

Ai;
4

®

@

o o—
=1

T ‘
o

W
©

®

N

* oo

il

F

USB 1.1 Transceiver

@
W

s ol o [ e
o v pu bt s o e e b

A)
fl

* e * e

o 2
SR
AT 4 4

o

o

—o

) ‘ =
o i

W
©

[

7
T
7

i

1
2

_
[

1

il

B

g
|
)

B

EXC)

3
o

Figure 8.6. USB-Blockchip ORCAD Circuit.



89

e R IR R RIS RIS
[ o QQ

o Neurotalk Interface
| : 5 /

J

s
L L L L’iLF L L L =
OERERDRD

|
|
S I
3 || |
I

L
‘] c
9]
vs)
Q)
I—

L ]

* i3 L it | Test Pads

il

OREBEHHREOOEDEDSEDEEDE]
7

i

: i
NS SISSINSININSINISIS]S

[ o
L o
l o

T
L
b ( @ F @ @ @ T @ T
w01 o T s W o o i o o ot Wi
g e BRI g g ot b

Figure 8.7. USB-Neurotalk ORCAD Circuit.
The schematics shown in figures 8.6 and 8.7 are too complex to be seen clearly. The
motivation for implementing the schematics was to ensure the correctness of the

interconnections when compared with the actual layout.



90

CHAPTER 9
DISCUSSION OF ACHIEVED RESULTS
The USB device was initially tested and validated in FPGA using the board shown in
figure 6.8. A sample device driver and application provided with the Windows Device
Driver Development Kit, were used. The device driver was used without being modified,
however the application required minimal modification to send the correct instruction to

the device.

9.1 FPGA PROTOTYPE TEST RESULTS

The blockchip and the neurotalk implementations were successfully tested on the
FPGA prototype board. Figure 9.1 shows the signals on DCLK, DIN and LE. This figure
closely matches figure 3.3, which shows the output waveform as described in the block
chip specification document. Figure 9.2 shows a partial blockchip output waveform as it
appears on an oscilloscope. The figure shows the channel output along with the DIN,
DATA and LE signals. Figure 9.3 shows the complete blockchip output waveform at
channel 1. The data the application sent to the USB was sent in decimal format. The 4-
byte data integer was (41,503)1 = (00 00 A2 1F)s6. In binary this number is (0000 0000
0000 0000 1010 0010 0001 1111),. Since the USB outputs data in a little-endian format.
The data that reaches the endpoint is as follows: 1% byte = 0000 1111, 2™ byte = 1010
0010. Hence the data received by the endpoint in binary is: (0001 1111 1010 0010),. The

data transmitted translates into the waveform attributes shown in figure 9.1.



91

AD2 AD1ADOA6A5A4A3A2A1A0T3T2TITOPH

0 0 01 111110100010

AD2=0 A6=1
AD1 = 0} Channel 1 A5=1
AD0=0 Ad=1
A3=1 >Amplitude
A2=1
Al=1
A0=0
J
T3=1
T2=0 Pulse width = 426.64 us P =1 (Anodic phase first)
T1=0
TO=0 H = 0 (No Holdoff)

Figure 9.1. Blockchip Instruction Attributes.

Each pulse width increment starting with T3T2T1TO = 0001 is in 53.33 us
increments. Since T3T2T1TO = 1000 the 8™ increment after T3T2T1T0 = 0001, the pulse
width is 53.33 us * 8 = 426.64 us. This number can be verified by looking at figure 9.4.
Since the voltage obtained is the open circuit voltage across the channel, i.e. it is not
loaded, the signal hits the compliance voltage, hence the amplitude cannot be verified.
However the fact that the pulse width is as expected we can safely assume that the system
is works correctly. The pulse polarity is ‘1’, which means the output waveform will be

anodic first.



92

Ch2 Freq
2.400NMHZ
Lowe signal
amplitude

LE setup time

5.00V  [#iF] 5.00v  M1.00Ms| A Ch1 &  2.60 V|
Ch3| 5.00V 27 Nov 2004

19.80 % 00:11:46

»- [mm—h

Ch2 Freq
2.399MHz
Low signal
amplitude

M4.00us| A Ch1 &  2.60 V|

Ci‘l.l.

alale-
==}
==t

5.00 V
Ch4[ 5.00V 27 Nov 2004

iH19.80 % 00:13:24

Figure 9.3. A Partial Oscilloscope Screenshot of Blockchip Channel Output.



93

- [m—
Ch2 Freq
2.576MH2
Low
resolution
Complete Bi-
phasic Waveform
Ch1l 5.00V |Ch2 5.00v M 200us| A Chil & 2.10V
Ch3| 5.00V WiFE] .00V 27 Nov 2004
28.00% 00:15:14

Figure 9.4. A Complete Oscilloscope Screenshot of Blockchip Channel Output.

The neurotalk version of the device was similar to that of the block chip design. The
difference between them lies in the different number and kinds of signals. The neurotalk
interface requires three signals: serial data output (ODATA), data clock (DCLK) and
reset (TAG). Before starting any transmission, a pulse needs to be generated on the TAG
signal to reset the neurotalk target device. The data output available at the first rising
edge of the DCLK, after the TAG goes low, is considered valid. In addition, the most
significant bit of each byte in the instruction is reserved for purposes discussed below.
Figure 9.3 shows the signal lines for the neurotalk version of the device and a close up of

the instruction as it is written to the endpoint FIFO.



94

( Hnalgzer]( Haveform MACHIME 1 ] [ﬁcq. Enntrnl] (Eance]] ( Fun ]
Accumulate DATA ¥ —> AA[ Center
of f ][ Hex )]0 —» 55 Screen
—!
sec/Div Delay Markers ¥ to 0O Trig to ¥ Trig to 0O
L 200 n 2,336 us Time B630.0 ns —14.00 ns BE6.0 ng
__L_______.
DATA ;
DATA
3
DATA ‘
DATA 0
DATA :
4
CLE
OCDATA
SHFETDA
DCLE

S
DETE [—
oath 4—— An 55 4755 55
DAETA
TaG
EF1HE
MCLE

=] T 0 L e b — T

4
f ]

Figure 9.5. Closeup of Neurotalk Output Signals.

The data that is sent to the neurotalk interface is a 4-byte data packet as shown in
figure 9.3. In binary, the data translates to: 1010 1010 0101 0101 0101 0101 0101 0101.
Since the 7" bit of each byte is reserved, it is not counted in the instruction stream. The
instruction stream is: 010 1010 101 0101 101 0101 101 0101. The signal output obtained
from the stream is shown in figure 9.6. Figure 9.7 shows the complete output of the
neurotalk interface state machine. It shows the TAG signal, the data output signal and the
data clock. I can be verified visually that the data output stream of figure 9.7 matches

with that of figure 9.6.

0101010101010110101011010101

Jyuuuiy vy vy




95

Figure 9.6. Neurotalk Data Stream.

o

Accumulate

( ﬁnalgzer]( Waveform MACHIME 1 ] (ﬁcq. Enntrnl] (Eancel] ( Run
DATA Wo—r Q0 Center
orf Hex 0 —: 00 Screen
sec/Div Lelay | Markers | ® to 0 |Trlg to X Trig to O
10.0 us 32,14 us Time g0.00 ns —10.41 us —10.33 us

[T

i

OATA [
DATA
DATA
DATA
DATA
DaTA
DaTA
DaTA
TAG
CLE
ODATA
EP1HE
SHFTDA
DCLK T T

MCLK flflflllfl]]ﬂ]}]lllllllll]llllllll@lllll-l L T R

=
1

=

TAG

asserted Output
Data

7 L

1=

=] O (N T (] b — o2
| |

Y [/

Figure 9.7. Neurotalk Output Signals.

A start-of-frame (SOF) signal was also implemented. It is designed to output a short
pulse and is an output from the USB core FPGA. While writing the specification for the
neurotalk interface logic, it was discovered that there was a need for the neurotalk
compatible external chip to be apprised of a start of data frame. The USB core sets a bus
to endpoint 1 before starting to send data to the endpoint. This bus was used to determine
the exact timing of the SOF signal. It was soon discovered that using the SOF would lead
to another potential problem. This problem surfaces if immediately after the very first

instruction, another instruction is sent, the new instruction does not have a SOF signal



preceding it. In an ideal condition this would pose no problem. However, if any one byte
were to be missed, due to a missing write enable, the wrong instruction would be read in,
and the state machine will not be synchronous with the USB core. To solve this problem,
the instruction format was redesigned in such a way that the most significant bit of the
first byte will always be a logic ‘1’. All subsequent bytes of that particular instruction
will have a logic ‘0’ as the most significant bit. Such an addition would make the
interface synchronous with the USB core at every instruction. Figure 9.8 shows the SOF

signal. The data packet closely follows the SOF pulse as shown.

Figure 9.8. Implementation of the SOF.

( Hnalgzer]( Haveform MACHIME 1 ] (ﬁcq. Enntrnl] (Eance]] ( Run ]
Accumulate [ ENDPT ]H = 0
aff III —+ 0 Screen

ull. -
sec/Div Delay Markers # to 0 Trig to ¥ Trig to 0O
L 1.00 us 470.0 ns Time 0 s —3.844 us —3.544 us

EMDFT

TDHARE SOF Signal L1 | I
REDATY | | I

SOF =

EF1HE |

EMPTY

EeT D_/JJJJJJJJ
ata write :

EF IRE enables :

CLE

TYOE ;

REVALD | I I I R N N NN SR S
THVALD ;

n

—




97

CHAPTER 10

DISCUSSION
The initially specified goals of the project have been successfully achieved. This
chapter discusses the overall project, including the problems that were faced during the
implementation, and recommendations for future improvements in the design and

hardware implementation.

10.1 USB DEVICE IMPLEMENTATION

As stated in chapter 6 and 8 the prototype FPGA device was implemented without
using PCB’s. Figure 7.1 shows the bottom view of the device. It can be easily seen that
the manual connections are complex and hence prone to loose connections. Such a
problem was frequently faced while building and debugging the design. Often, while the
device was working, one of the FPGA’s would lose its configuration and would have to
be programmed again. The other problem that was faced was validating the USB core
that was obtained as an open source implementation. Since it did not have

documentation, it took a considerable amount of time to configure and debug.

The software used for the device is the application that was supplied by the Windows
Driver Development kit. It is written in C and requires a driver build environment. The
driver is a generic version that is compatible with devices that support only bulk
transfers. Although the driver works, it has not been optimized for use with any one

specific device.

10.2 RECOMMENDATIONS
The FPGA development board that was designed required extensive soldering to

function correctly. Over time due to the use of the device, the solder connections degrade



98

and either need to be re-done, or the connecting wires need to be replaced. To avoid such
extensive maintenance and replacement, the device could be implemented as a PCB.
Using a PCB however could create other problems. For instance, making a change to a
PCB is more difficult compared to making a change in the manually constructed device.
To overcome such a disadvantage, each major component can be soldered to it own PCB.
The individual components can then be interconnected using connectors and can be made
to connect any pin on one FPGA to any pin on other devices. Such a PCB system is

shown in figure 10.1.

Interconnections

FPGA FPGA

—
L —
—

PCB 1 PCB 2

Figure 10.1. Proposed PCB based Development System.

Such a system will make sure that FPGA’s don’t lose configuration due to bad
connections. It will enable quick re-configuration of the pin connections, provided the

correct type of connector is used to connect the two PCB’s.

In addition to the above-mentioned changes, the device driver used for the
development board can be optimized more by implementing it at a lower level in the
operating system stack. The application currently is executed using a command line
console provided along with the windows driver development kit, and can be improved
by adding a graphical user interface for better user interaction and control of the output

waveform attributes.



99

10.3 TEST RESULTS

During the implementation and testing of the device a number of problems were
faced. Due to the absence of accompanying documentation for USB core it was time
consuming to get the device to work. In addition, due to insufficient FPGA software
support an error was induced in the FIFO implementation of the USB core. This error
caused the enumeration of the device to fail. It was discovered that the FIFO outputs are
required to be unregistered to function as expected. The other problem faced was with the
main 48MHz and the internal clocks. This problem caused the internal logic to sometimes
behave erratically thereby giving an inconsistent output. It was discovered that the main
clock was skewed which also skewed its derivative clocks. Generating reduced frequency
clocks in small steps solved the problem. Instead of generating the 2.4 MHz DCLK
directly from the 48MHz main clk, an intermediate 4.8MHz FCLK was derived and then
the DCLK was derived from the FCLK. This reduced the jitter noticeably and improved

the performance of the interface logic.

Subsequent to solving the problems, the FPGA development board was validated and
verified for the application of interfacing with the blockchip and the proposed neurotalk
chips. The ASIC implementation of the two interfaces has been implemented and is
currently being tested. In addition to the ASIC version, the FPGA based development
board in itself can be used effectively as a stimulator system after the development of the

device driver and application optimized for this application.



100

CHAPTER 11
CONCLUSION

The USB device was successfully implemented and tested in FPGA in spite of facing
problems. The USB, hence appears to be a good solution for use as a link between the PC
and the two microchips: Blockchip and Neurotalk. To be successfully used as a
neuroprosthetic stimulator system, the complete systems needs to be implemented and
tested in ASIC. In addition, the device driver needs to be optimized and the application
needs to be modified to add a graphical user interface.

The system was implemented manually using a copper clad perforated board. This
required that the connections be made using wire. Doing so provided the flexibility to
change the connections as needed, however it turned out to be tedious to design and
debug. The problem of degrading solder connections was also faced in a later stage of
development. To overcome these problems, implementation in PCB is suggested for
future implementation. Each electronic component soldered on a separate PCB gives a

reliable connection, while letting the designer to be flexible enough to make changes



101

easily and reliably. The system has been implemented in ASIC and is currently being

tested.

APPENDIX A

BLOCKCHIP INTERFACE VERILOG RTL CODE



102

“include "usb1_tech.v"

module usb1_interface(clk, //input
usb_rst, //input
clr, //input
man_rst, //input
epl_funct_din, // input
epl_funct_re, // output
epl_we,
epl_funct_full,//input
epl_funct_empty,//input
Dclk, //output
Tclk, //output
Fclk, //output
LEO, //output
outData, //output

select,

dataready,

Data,

sof);//output
] 8 8 8 8 8 8 8 8 8 83 N S S N N NN N N N S S N N N N N N N S S N N N N N N PN N S S N N N N N N N N N N NN NS
// ENDPOINT 1 BULK, ouT

[ SISV N NN NEN NNV LN NEVENT NN SEN . SENEN NN NNV ST NN SN NT NN LN NN NN NN NN N NV NV

// This data bus inputs data from the FIFO to the device function.
// Tt is then used by the function. This is used by endpoint 1
input [7:0] ep1_funct_din;

wire [7:0] ep1_funct_din;

// This is the read enable signal the goes into the FIFO.
output ep1_funct_re;

wire ep1_funct_re;

// This input comes in from the FIFO, it tells the device

// whether or not the FIFO is empty.

input ep1_funct_empty;

wire ep1_funct_empty;

input ep1_funct_full;

wire ep1_funct_full;

output LEO;

output Dclk;

output Tclk;

output Fclk;

wire LEO, Dclk, Tclk, Fclk;

output [15:0] Data;



wire [15:0] Data;
output dataready;
output select;

output outData;
wire outData;

input epl_we;
wire epl_we;

input clk, usb_rst, clr;// usb_rst coming from the USB core

wire clk, usb_rst, clr;

input man_rst; / man_rst coming from outside the FPGA

input sof;
wire sof;

reg [7:0] reg5;
//reg re;

reg LEO;

reg select;
//reg ff_enable;
reg enable_le;
reg shift;

reg sft_count;

reg epl_funct_re;
//wire ep1_funct_re;
reg sr_dataready;
reg dataready;

reg [15:0] Data;
reg [15:0] bitfield;

reg [3:0] countl;
reg [3:0] count2;
reg [3:0] count3;

reg [8:0] shift_count;
reg Dclk, Tclk, Fclk;

103



104

// Dclk at 2.5MHz =
always @(negedge Fclk)
begin
if(lusb_rst) begin
Dclk <=1b0;
countl <= 4'd0;
end
else if (!man_rst) begin
Dclk <= 1'b0;
countl <= 4'd0;
end
else if(countl == 4'd1 && Dclk == 1'b0 && usb_rst == 1'b1 && man_rst ==
1'b1) begin
Dclk <= 1'b1;
countl <= 4'd1;
end
else if(countl == 4'd1 && Dclk == 1'bl && usb_rst == 1'b1 && man_rst ==
1'b1) begin
Dclk <= 1b0;
countl <= 4'd1;
end else countl <= countl + 4'd1;
end

// Fclk = 5MHz
always @(posedge clk)
begin
if(lusb_rst) begin
Fclk <= 1b0;
count3 <= 4'd0;
end
else if(!man_rst) begin
Fclk <= 1'b0;
count3 <= 4'd0;
end
else if(count3 == 5 && Fclk == 1'b0 && usb_rst == 1'b1 && man_rst == 1'b1)
begin
Fclk <=1'b1;
count3 <= 4'd1;
end
else if(count3 == 5 && Fclk == 1'b1 && usb_rst == 1'b1 && man_rst == 1'b1)
begin
Fclk <= 1b0;
count3 <= 4'd1;
end
else count3 <= count3 + 4'd1;
end



105

// Tclk at 312500Hz
always @(posedge Dclk)
begin
if(lusb_rst) begin
Tclk <= 1b0;
count2 <= 4'd0;
end
else if(!man_rst) begin
Tclk <= 1b0;
count2 <= 4'd0;
end
else if(count2 == 4'd4 && Tclk == 1'b0 && usb_rst == 1'b1 && man_rst ==
1'b1) begin
Tclk <= 1'b1;
count2 <= 4'd1;
end
else if(count2 == 4'd4 && Tclk == 1'bl && usb_rst == 1'bl && man_rst ==
1'b1) begin
Tclk <= 1b0;
count2 <= 4'd1;
end else count2 <= count2 + 4'd1;
end

reg [7:0] temp;
reg [3:0] count_re;

reg epl_wel, epl_we2;

always @(posedge clk)
epl_wel <=epl_we;

always @(posedge clk)
epl_we2 <=epl_wel;

I
// Start reading from the OUT FIFO
I

always @(posedge clk)
begin
if(lusb_rst) begin
count_re <= 4'd0;
end
if(sof) count_re <= 4'd0;



if(epl_we2 & count_re < 4'd8) begin

end

if(count_re == 4'd0) begin
epl_funct_re <= 1'bl;
Data[15:8] <= ep1_funct_din;
dataready <= 1'b0;
count_re <= 4'd1;

end

if(count_re == 4'd1) begin
epl_funct_re <= 1'bl;
Data[7:0] <= ep1_funct_din;
dataready <= 1'b1;
count_re <= 4'd2;

end

if(count_re == 4'd2) begin
epl_funct_re <= 1'bl;
bitfield[15:8] <= ep1_funct_din;
dataready <= 1'b1;
count_re <= 4'd3;

end

if(count_re == 4'd3) begin
epl_funct_re <= 1'bl;
bitfield[7:0] <= ep1_funct_din;
dataready <= 1'b1;
count_re <= 4'd4;

end

if(count_re == 4'd4) begin
epl_funct_re <= 1'bl;
temp <= ep1_funct_din;
dataready <= 1'b1;
count_re <= 4'd5;

end

if(count_re == 4'd5) begin
epl_funct_re <= 1'bl;
temp <= ep1_funct_din;
dataready <= 1'b1;
count_re <= 4'd6;

end

if(count_re == 4'd6) begin
epl_funct_re <= 1'bl;
temp <= ep1_funct_din;
dataready <= 1'b1;
count_re <= 4'd7;

end

if(count_re == 4'd7) begin
epl_funct_re <= 1'bl;
temp <= ep1_funct_din;
dataready <= 1'b0;
count_re <= 4'd0;

end

106



end
/!

~A~IAIAAY

107

else if(ep1_we2 == 1'b0) begin
epl_funct_re <= 1'b0;
if(dataready == 1'b0) dataready <= 1'b0;
else if(dataready == 1'b1) dataready <= 1'b1;
end

ISV STV NI NENT . NENENENEN LN NENENT LN NN NENENT NN LN N NN NENENENE N NN LN NN NI SENV . NEN NEN N NEN VNI VLNV

// Shift out data for 16 Dclk cycles

/1

~~AIA A

ISV ST NN NENTNTNENINENT NENINTNENTNENENENENENENTNENE YNNI NN UV NENENT NN SENENT NN NI NEN NN NI LN NTNENT NN

always @(posedge Fclk) begin

6'd1;

if(lusb_rst) begin
shift_count <= 6'd0;
sr_dataready <= 1'b0;
select <= 1'b1;
sft_count <= 1'b1;
LEO <=1'b0;

end

else if(!man_rst) begin
shift_count <= 6'd0;
sr_dataready <= 1'b0;
select <= 1'b1;
sft_count <= 1'b1;
LEO <= 1'b0;

end

if(sr_dataready == 1'b0)
shift count <= 6'd0;

if(sr_dataready == 1'b1 & shift_count == 6'd0 & Dclk == 1'b0) begin
shift_count <= 6'd1;
select <= 1'b1;
LEO <= 1'b0;

end

else if(sr_dataready == 1'b1 & shift_count == 6'd0 & Dclk == 1'b1) begin
shift_count <= 1'b0;
select <= 1'b0;
LEO <= 1'b0;

end

else if(sr_dataready == 1'bl & shift_count <6'd38) shift_count <= shift_count +

if (dataready == 1'b1 & shift_count == 6'd0) begin
sr_dataready <= 1'bl;

end

else if (dataready == 1'b0 & shift_count == 6'd36) begin //691
sr_dataready <= 1'b0;



108

sft_count <= 1'd0;
select <= 1'b1;
end

if(sr_dataready == 1'b1 & shift_count == 6'd1) begin
select <= 1'b1;
LEO <= 1'b0;

end

if(sr_dataready == 1'b1 & shift_count == 6'd2 & Dclk == 1'b0) begin
select <= 1'b0;
LEO <=1'b0;

end

if(sr_dataready == 1'b1 & shift_count == 6'd3) begin
select <= 1'b0;
LEO <= 1'b0;

end

if(sr_dataready == 1'b1 & shift_count > 6'd3 & shift_count < 6'd34) begin
select <= 1'b0;
LEO <= 1'b0;

end

if(sr_dataready == 1'b1 & shift_count == 6'd33 & Dclk == 1'b1) begin
select <= 1'b1;
LEO <= 1'b1;

end

if(sr_dataready == 1'b1 & shift_count == 6'd34) begin
select <= 1'b1;
LEO <= 1'b0;
end
end

/1

“ifdef FPGA
Ipm_shiftreg shft_reg(.data(Data),
.clock(!Dclk),
.enable(enable),



109

Joad(select),
.shiftout(outData));
defparam shft_reg.lpm_width = 16;
//
/!
// Synthesize in ASIC
//

“else “ifdef ASIC

mux21 mux0(.in1(Data[0]), .in0(1'b0), .sel(select), .out(dff_0_i));
dff_i df0(.data(dff_0_i), .q(dff_0_o), .clock(!Dclk), .enable(1'b1));

mux21 mux1(.in1(Data[1]), .in0(dff_0_o ), .sel(select), .out(dff_1_i));
dff i df1(.data(dff_1_i), .q(dff_1_o), .clock(!Dclk), .enable(1'b1));

mux21 mux2(.in1(Data[2]), .in0(dff_1_o), .sel(select), .out(dff_2_i));
dff i df2(.data(dff_2_i), .q(dff_2_o), .clock(!Dclk), .enable(1'b1));

mux21 mux3(.in1(Data[3]), .in0(dff_2_o), .sel(select), .out(dff_3_i));
dff_i df3(.data(dff_3_i), .q(dff_3_o), .clock(!Dclk), .enable(1'b1));

mux21 mux4(.in1(Data[4]), .in0(dff_3_o0), .sel(select), .out(dff_4_i));
dff_i df4(.data(dff_4_i), .q(dff_4_o), .clock(!Dclk), .enable(1'b1));

mux21 mux5(.in1(Data[5]), .in0(dff_4_o), .sel(select), .out(dff_5_i));
dff i df5(.data(dff_5_i), .q(dff_5_o0), .clock(!Dclk), .enable(1'b1));

mux21 mux6(.in1(Data[6]), .in0(dff_5_o), .sel(select), .out(dff_6_i));
dff i df6(.data(dff_6_i), .q(dff_6_o), .clock(!Dclk), .enable(1'b1));

mux21 mux7(.in1(Data[7]), .in0(dff_6_o), .sel(select), .out(dff_7_i));
dff_i df7(.data(dff_7_i), .q(dff_7_o), .clock(!Dclk), .enable(1'b1));

mux21 mux8(.in1(Data[8]), .in0(dff_7_o0), .sel(select), .out(dff_8_i));
dff_i df8(.data(dff_8_i), .q(dff_8_o), .clock(!Dclk), .enable(1'b1));

mux21 mux9(.in1(Data[9]), .in0(dff_8_o), .sel(select), .out(dff_9_i));
dff i df9(.data(dff_9_i), .q(dff_9_o), .clock(!Dclk), .enable(1'b1));

mux21 mux10(.in1(Data[10]), .in0(dff_9_o), .sel(select), .out(dff_10_i));
dff i df10(.data(dff_10_i), .q(dff_10_o), .clock(!Dclk), .enable(1'b1));

mux21 mux11(.in1(Data[11]), .in0(dff_10_o), .sel(select), .out(dff_11_1i));
dff_i df11(.data(dff_11_i), .q(dff_11_o), .clock(!Dclk), .enable(1'b1));



110

mux21 mux12(.in1(Data[12]), .in0(dff_11_o0), .sel(select), .out(dff_12_i));
dff_i df12(.data(dff_12_i), .q(dff_12_o), .clock(!Dclk), .enable(1'b1));

mux21 mux13(.in1(Data[13]), .in0(dff_12_0), .sel(select), .out(dff_13_i));
dff_i df13(.data(dff_13_i), .q(dff_13_o), .clock(!Dclk), .enable(1'b1));

mux21 mux14(.in1(Data[14]), .in0(dff_13_o), .sel(select), .out(dff_14_i));
dff i df14(.data(dff_14_i), .q(dff_14_o), .clock(!Dclk), .enable(1'b1));

mux21 mux15(.in1(Data[15]), .in0(dff_14_0), .sel(select), .out(dff_15_i));
dff i df15(.data(dff_15_i), .q(outData), .clock(!Dclk), .enable(1'b1));

“endif // ASIC
“endif // FPGA
//

endmodule

BIBLIOGRAPHY

[1] Akin T., Najafi K., Bradley R.M. A Wireless Implantable Multichannel Digital
Neural Recording System for a Micromachined Sieve Electrode. IEEE Journal of
Solid-State Circuits, January 1998.

[2] Ben-Haim S. A., Anuchink C.L., Dinnar U. A Computer Controller for Vest
Cardiopulmonary Resuscitation (CPR). IEEE Transactions on BME, May 1988.

[3] Broberg R., Hubbard A. A Custom-Chip Based Functional Electrical Stimulation
System. IEEE Transactions on BME, September 1994.

[4] Buckett J.R., Peckham P. H., Thrope G. B., Braswell S. D., Keith M. W. A flexible,
Portable System for Neuromuscular Stimulation in the Paralyzed Upper Extremity.
IEEE Transactions on BME, November 1988.

[5] Capelle C., Trullemans C., Arno P., Veraart C. A Real-Time Experimental Prototype
for Enhancement of Vision Rehabilitation using Auditory Substitution. IEEE
transactions on BME, October 1998

[6] Cheever E.A., Thompson D.R., Cmolik B.L., Santamore W.P., George D.T. A
Versatile Microprocessor-Based Multichannel Stimulator for Skeletal Muscle
Cardiac Assist. IEEE Transactions on BME, January 1998

[7] Connor S.B., Quill T.J., Jacobs J.R. Accuracy of Drug Infusion Pumps Under
Computer Control. IEEE Transactions on BME, September 1992

[8] Hartov A., Mazzarese R.A., Reiss F.R., Kerner T.E., Osterman S., Williams D.B.,



111

Paulsen K.D. A Multichannel Continuously Selectable Multifrequency Electrical
Impedance Spectroscopy Measurement System. IEEE Transactions on BME, January
2000.

[9] Hinterberger T., Schmidt S., Neumann N., Mellinger J., Blankertz B., Curio G.,
Birbaumer N. Brain-Computer Communication and slow cortical Potentials. IEEE
Transactions on BME, June 2004.

[10] Ignagni A.R., Buckett J. R., Peckham P.H. A Programming and Data Retrieval
System for an Upper Extremity FES Neuroprosthesis. Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, 1990

[11] Kaczmarek K.A., Kramer K.M., Webster J.G., Radwin R.G. A 16-channel 8-
Parameter Waveform Electrotractile Stimulation System. IEEE Transactions on
BME, October 1991.

[12] Kanhai J.K.K., Caspers P.J., Reinders E.G.J., Pompe J.C., Bruining H.A., Puppels
G.J. A Fast digitally Controlled Flow Proportional Gas Injection System for Studies
in Lung Function. IEEE Transactions on BME, November 2003.

[13] Krief B., Dye R., Tucker J.H., Brugal g., Chassery J.M. A New Approach to Man
Machine Communication for Computerized Microscopy. IEEE Transactions on
BME, March 1994

[14] Lawrence T.L., Schmidt R.N. Wireless In-Shoe Force System. IEEE-EMBS
International Conference Proceedings, Oct-Nov 1997

[15] Mesic S., Babuska R., Hoogsteden H.C., Verbraak A.F.M. Computer Controlled
Mechanical Stimulation of the Artificially Ventilated human Respiratory System.
IEEE Transactions on BME, June 2003.

[16] Morris L. R, Barszczewski P. Algorithms, Hardware, and Software for a Digital
Signal Processor Microcomputer-Based Speech Processor in a Multielectrode
Cochlear Implant System. IEEE Transactions on BME, June 1989.

[17] Muller G.R., Neuper C., Pfurtscheller G. Implementation of a Telemonitoring
System for the Control of an EEG-Based Brain-Computer Interface. IEEE
Transactions on Neural Systems and Rehabilitation Engineering, March 2003

[18] Polak M., Kostov A. Development of Brain-Computer Interface: Preliminary
Results. IEEE-EMBS International Conference Proceedings, Oct-Nov 1997

[19] Rollins D.L., Killingsworth C.R., Walcott G.P, Justice R.K., Ideker R.E., Smith
W.M. A Telemetry System for the Study of Spontaneous Cardiac Arrhythmias.
IEEE Transactions on BME, July 2000

[20] Sawan M., Duval F., Hassouna M.M., Li J., Elhilali M.M, Lachance J., Leclair M.,
Pourmehdi S., Mouine J. Computerized Trancutaneous Control of a Multichannel
Implantable Urinary Prosthesis. IEEE Transactions on BME, June 1992

[21] Schalk G., McFarland D.J., Hinterberger T., Birbaumer N., Wolpaw J.R. BCI2000:



112

A general purpose Brain-Computer Interface System. IEEE Transactions on BME,
June 2004

[22] Schuessler T.F., Bates J.H.T. A Computer-Controlled Research Ventilator for small
Animals: Design and Evaluation. IEEE Transactions on BME, September 1995

[23] Suaning G.J., Lovell N.H. CMOS Neurostimulation ASIC with 100 channels,
Scalable Output, and Bidirectional Radio-Frequency Telemetry. IEEE Transactions
on Biomedical Engineering, February 2001

[24] Zeng S., Powers J.R., Hsiao H. A New Video-Synchronized Multichannel
Biomedical Data Acquisition System. IEEE Transactions on BME, March 2000

[25] Zhu H., Harris G.F., Wertsch J.J., Tompkins W.J., Webster J.G. A Microprocessor-
Based Data-Acquisition System for Measuring Plantar Pressure from Ambulatory
Subjects. IEEE Transactions on BME, July 1991



	Acknowledgement
	Table of ContentS
	List of Tables
	List of Figures
	Introduction
	1.1 neuroprosthetic system functionality
	1.2 PC Communication Links

	Review of prevelant communication links
	2.1 Overview of various hardware architectures
	2.2 Analysis of hardware architectures

	Motivation for present work
	3.2 alternative communication links
	3.3 advantages of the usb

	The universal serial bus
	4.1 usb architectural overview
	4.2 usb transfer types
	4.3 usb enumeration

	the usb stimulator device
	5.1 the usb core
	The USB 1.1 transceiver used for the system was a commercially manufactured IC chip. The USB port used was a standard type A connector. All the other blocks have been implemented in Verilog HDL. Some of the above blocks are top-level blocks, i.e., they consist of more than one lower level Verilog modules. This section also describes the overall functioning of the USB core from a data-flow perspective.
	5.2 usb-block chip interface
	5.3 usb-neurotalk interface
	5.4 usb bandwidth analysis

	fpga prototype design
	6.1 USB-Block chip interface
	6.2 usb-neurotalk interface
	After the successful testing of the USB-Block chip interface, the neurotalk interface was designed to interface with the USB. Although it had certain similarities with the block chip interface, it took considerably less time to design due to the fact that the interface to the USB core had already been studied extensively while designing the USB-block chip interface. While the USB-block chip interface took about 16 weeks to design and implement, it took only about 1 week to design, implement, test and debug the USB-Neurotalk interface. Out of the 16 weeks for the block chip interface, it took 4 weeks to design the FPGA development board, and 12 weeks to learn the inner functioning of the USB core.
	6.3 fpga development board
	6.4 device driver and application

	USB-interface system testing
	7.1 FPGA board design and testing
	7.2 usb core testing and verification
	7.3 interface testing and verification
	The only problem encountered while designing the interface what that of clock jitter. The DCLK and TCLK used by the block chip were derived from the main 48MHz clock. The main clock was observed to jitter, when viewed on a logic analyzer. This jitter was hence also induced in the DCLK and TCLK. The source of the problem on the derived clocks and a solution is presented below. The problem is shown in figure 7.4.

	asic design flow
	8.1 Sysnthesis
	8.2 Layout
	8.3 drc & lvs checks

	discussion of achieved results
	9.1 fpga prototype TEST RESULTS

	Discussion
	10.1 usb device implementation
	10.2 recommendations
	10.3 test results

	conclusion
	[2] Ben-Haim S. A., Anuchink C.L., Dinnar U. A Computer Controller for Vest
	Cardiopulmonary Resuscitation (CPR). IEEE Transactions on BME, May 1988.


