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ABSTRACT

Neuroprosthetic research is nearing a point where it requires high-speed link to the

PC, owing to the higher number of electrodes being used. This research aims to verify

and  validate  the  use  of  the  USB,  which  is  a  widely  available,  high  bandwidth  PC

communication link. The USB provides flexibility in the different kinds of devices and

transfer types it supports. The USB protocol, along with the potential application types

are also described and discussed. An open source implementation of the USB IP core is

tested and customized for interface with two neuroprosthetic stimulator chips developed

at the Pritzker Institute of Bio-Medical Science and Engineering. Bandwidth analysis for

the application interfaces was done considering the bus timing limitations of the USB.

The difficulties faced while verifying the USB core, while implementing the hardware

development  board,  and  while  designing  the  interfaces  are  also  discussed.  The

development  board  was  developed  by  hand  and  not  as  a  PCB,  as  it  gave  complete

flexibility in implementing modifications. The problems encountered were resolved and

the  USB core  and  two  chip  interfaces  were  successfully  tested  and  validated  using

FPGAs. The two different cores have been fabricated in ASIC.

 

ix



CHAPTER 1

INTRODUCTION

The Bio-Medical engineering field in recent years has enjoyed considerable success

with the use of the pacemaker for patients who have irregular heart rhythms and cochlear

implants  that  assist  patients  with  hearing  loss.  Extensive  research  is  currently  being

conducted in the field of neuroprostheses,  where the goals of the research vary from

brain-machine interface to stimulation of paralyzed muscle. Regardless of the application,

often the success of any implantable device depends on its functionality, the amount of

power it requires to function and the physical size of the device.

Power for an implanted neuroprosthesis device is typically provided over an inductive

transcutaneous link using a radio-frequency  (RF) carrier, and that same link is often used

for data transmission to and from the implanted device. Using a separate communication

link for the implant is less common since the RF power link can be easily used as a

communication link, and setting up a separate link would require another inductive coil

pair operating at another frequency, and may consume valuable chip area and additional

power.  To  justify  implantation,  a  device  should  also  have  sufficiently  high  enough

functionality. Most systems that are in the research stage are not fully implanted since

their functionality has been insufficiently researched or validated. Portions of the system

are left external so that their requirements can be refined in preparation for the design of a

fully  implantable  device.  For  modern  neuroprotheses  designs,  as  the  functional

complexity, and number of communication channels are increased, so must be increased

the speed of communication to and from the implantable device.  To select a reliable,

robust  communication  link  that  allows  for  high-speed  computational  control  of  the

implant, the use of personal computers must be considered. Only proven communication

links are widely available in the form of computer peripheral buses. Other commercially

available communication systems are more specialized and are not as common as the
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peripheral buses. Adapting custom bio-medical devices to these buses is advantageous, in

terms of available  support and availability  on PC’s.  Earlier  research projects  on such

devices  had  extensively  used  advances  in  computer  technology.  For  instance,  many

research  projects  used  the  serial  port  for  data  transfer,  while  some  others  had  a

specialized  hardware  interface  to  the  internal  PC  bus.  Understandably  system

development for devices using the serial port is relatively simple then for as compared to

specialized  internal  buss  hardware devices.  The specialized  hardware devices,  on the

other hand have better performance than the serial port, due to their direct access to the

high-speed PC data buss. For emerging neuroprosthesis research, there is a need for a

communication link, that is easy to implement and has higher performance than the serial

and  parallel  ports.  This  research  establishes  the  feasibility  of  using  the  USB  as  a

communication  link  for  a  visual  cortical  stimulator  that  has  been  developed  at  the

Pritzker Institute of Bio-Medical Science and Engineering.  Two prototype devices are

designed, implemented and tested. Each device is tested in FPGA and ASIC form.

1.1 NEUROPROSTHETIC SYSTEM FUNCTIONALITY

A neuroprosthetic system can be considered as a combination of devices that provide

electrical  stimulation to neurons as compensation for functional deficit  or disease. An

implantable neuroprosthetic system generally consists of three components; the external

component,  called  the  external  control  unit  (ECU),  the  implanted  electronic  circuitry

(IEC),  and  the  stimulating  or  recording  electrodes.  The  ECU  consists  of  a  PC  that

interfaces with custom or off-the-shelf hardware and a communication link mechanism,

to send digital data/instructions to the hardware. For a stimulating neuroprosthesis, the

IEC hardware then converts the digital instructions into analog waveforms for driving the
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electrodes. These waveforms then stimulate the neurons via charge injection through the

implanted electrodes. Such a system is pictorially depicted in Figure 1.1. 

Figure 1.1. A Neuroprosthetic System with most Functionality Implanted.

Figure 1.1 shows that most of the hardware functionality is implanted. This requires

that  the  IEC  hardware  be  flexible  to  the  kinds  of  instructions  it  can  accept,  thus

demanding a complex data structure so that a variety of commands can be accommodated

Having this high level of flexibility is a major requirement due to the fact that changing

the functionality, or replacing a unit with a new one requires the risk of surgery, which

should be avoided. 

Addressing and instructing a large number of electrodes requires a higher speed and

bandwidth than provided by the widely used PC based RS-232 or printer parallel buses.

Used  in  this  study,  the  cortical  stimulator,  for  a  visual  prosthesis,  is  capable  of

stimulating, in its current form, 256 electrodes. It is expected that 4 stimulators would be

implanted and combined for a 1,024-channel  system.  The increase in the number of

addressable channels, over simpler devices like a cochlear implant (8-22 channels) has

lead  to  an increase  in  the demand for  bandwidth  between the  PC and the implanted
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devices.  To  update  1024  instructions,  one  for  each  electrode,  in  a  reasonable  small

amount of time requires an unusually wide bandwidth for the command link. An estimate

of the required bandwidth can be obtained as follows. Each instruction in the present

form requires 2-bytes of storage. So, 1,024 instructions will require a storage and transfer

of 2,048 bytes. The transfer rate of these bytes will depend on the refresh rate that is the

average in visual applications. A conservative refresh rate of once every 10ms can be

used. Thus the transfer rate in this case would be, 2,048 bytes/ 10ms. This number can be

reduced  to  204,800  bytes/s  or  204Kb/s,  at  the  absolute  minimum.  This  figure  only

includes updating the frame buffer. It does not include the instruction that will command

the device to use the buffer. A variety of different commands can be implemented, for

instance some instructions can start, stop the stimulation, give a range of electrodes to

stimulate, etc. In addition to the above speed requirement, a communication link must

provide  for  a  conservative  amount  of  excess  bandwidth  that  will  take  care  of

communication bottlenecks that are not quite obvious at the start of any research project.

The  various  available  communication  links  are  discussed  in  section  1.2.  It  has  been

determined through detailed analysis that in the visual prosthesis project the link operate

at 1.2Mbps.

1.2 PC COMMUNICATION LINKS

The available literature on the subject reports a variety of implantable neuroprosthesis

systems and communication strategies. Reviewing the research conducted over a 16 year

period  shows  that  these  techniques  are  necessarily  technology  dependent.  A  more

detailed  comparative  analysis  of  these  research  projects  is  done  in  Chapter  2.  An

overview of each technique is given below.
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Embedded  System: An  embedded  system  is  a  combination  of  computer

hardware and software,  and perhaps additional mechanical or other parts, designed to

perform a  dedicated  function.  The  hardware  usually  comprises  of  a  microprocessor,

random access memory (RAM), read only memory (ROM), digital-to-analog converter

(DAC)  and  analog-to-digital  converters  (ADC).  The  ROM  is  used  to  store  program

instructions,  which  direct  the  embedded system to  perform intended  functions.  Since

most  embedded  system  software  is  developed  on  IBM-PC’s  and  Sun  Microsystems

workstations,  the  parallel  port  or  the  serial  port  is  used  to  download  the  program

instruction object code into the ROM. The RAM is used to store run-time data generated

during the functioning of the system. The DAC is usually used to convert digital signals

into analog form. These converters  are  usually  used in  systems where digital  data  is

converted into analog form, for instance in digital cell phones and television sets. The

ADC can be used with additional circuitry to accept interrupts and process them. The

data transfer speeds of an embedded system vary depending on the processor speed and

the data bus width that the system supports. Most embedded systems have a maximum

clock speed of 5-10 MHz and a data bus width of 8-16 bits. The ideal maximum data

transfer speed in such systems is about 20 Mbps.

RS-232 Serial Port: The serial port is a standard port available on every IBM-

PC. It  can  be  accessed  using  C /  C++ libraries  and is  a  low cost,  low performance

communication solution. The serial port can support a maximum of about 120 Kbps.

LPT Port: The parallel port (LPT) enables data transmission in parallel bytes,

instead of serial bit stream like the RS-232 port. It can also be accessed using C / C++

libraries. The speed of the parallel port is up to 200 Kbps.
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PC  bus  (Custom  Hardware): Custom  designed  hardware  can  be  directly

interfaced with the PC bus.  This  requires  the custom hardware to  be electrically  and

functionally compatible with the PC bus. A designer has to make sure that the timings of

all the signals are within a safe error margin mentioned in the particular bus specification.

PC bus (Commercial Hardware): Commercial hardware can be directly used

with  the  PC  bus,  without  knowing  how  the  bus  works,  electrically  or  functionally.

Operating  system  software  and  drivers  are  provided  along  with  the  hardware  card.

Programming can  be  done using  standard  programming  languages  such as  C/C++ or

using Labview or Matlab. The data transfer speed of the PC bus is about 40Mbps.

PC bus  (Hybrid  Hardware): The  PC bus  can  be  used  as  a  combination  of

custom and  commercial  hardware  cards.  For  the  custom hardware,  all  electrical  and

functional and timing requirements must be met as discussed above. 

USB  (Commercial  Hardware): Using  the  USB  to  exchange  information

between PC and hardware  is  relatively  new. This  architecture  uses  commercial  USB

compatible hardware to connect to the PC. Along with the hardware, operating system

drivers are also provided. The maximum data transfer speed of such systems can be 480

Mbps.

Table 1.1 shows a comparison between all the communication links described above.

For the cortical stimulator system under consideration, the only communication links that

give  us  the  required  bandwidth  are  the  PCI  bus  specialized  hardware,  the  USB and

firewire.  Out of these the PCI bus based specialized hardware is rejected as it  is not

available  with every  PC and requires  the  use  of  a  special  card inserted  into  the  PC.

Firewire and USB are both new communication links aimed at high bandwidth transfers.
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This research used USB 1.1 instead of 2.0 and firewire due to the easy availability of a

USB 1.1 core and better support with respect to the hardware IP core and the device and

application software.

Table 1.1. Summary of Various Communication Links.
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Communication
Links

Transfer Speed Positive 
Attributes

Negative 
Attributes

Embedded
Systems

20Mb/s 1) Developer 
has control over 
every aspect of 
implementation.

1) Complex to 
implement.

Serial Port 120Kb/s 1) Can have 
long cables, and 
requires only a 
few data lines.

1) Slow

Parallel 
Port

200Kb/s 1) Easier to 
implement, 
compared to 
serial port.

1) Uses large 
number of data 
lines.

PCI Bus
(Specialized 
Hardware)

40Mb/s 1) High 
functionality, 
speed.
2)Good 
development 
support.

1) Too 
specialized, not 
available with 
all PC’s

USB 1.1/2.0 12Mb/s (1.1)
480Mb/s (2.0)

1) High speed.
2) Good 
development 
support.
3) IP Cores 
available.

1) High initial 
learning curve.
2) Involved 
device driver 
development.

Firewire 400Mb/s 1) High speed.
2) Good 
development 
support.

1) Lack of 
freely available 
cores.
2) Initially 
developed for 
high speed 
video and 
audio 
applications.



CHAPTER 2

REVIEW OF PREVELANT COMMUNICATION LINKS

The previous chapter introduced various different architectures that have been used in

the past and ones that are currently prevalent. A description of each research project and

how  different  hardware  architectures  have  been  used  in  the  past  is  included  in  this

chapter.

 

2.1 OVERVIEW OF VARIOUS HARDWARE ARCHITECTURES

I. Embedded Systems.

1. A computer controlled vest for cardiopulmonary resuscitation 

(CPR)  [2].  Objective:  The  objective  of  this  research  was  to  design  and

implement  an embedded controller  for vest  Cardiopulmonary  Resuscitation

(CPR). 

Hardware: The hardware consists of three different modules. The first one is

the PC that is used to download program code to the second module.  The

second  module  is  an  embedded  computer.  It  consists  of  an  Intel  8088

microprocessor,  ROM  (to  store  the  execution  program),  RAM  (to  store

temporary data generated during runtime), a universal transmitter/receiver to

enable RS-232 communication between the PC and the embedded computer, a

timer  for  interrupt  generation,  an  A/D converter  and  I/O  ports.  The  third

module is the power stage circuit that interfaces with the I/O ports. This stage

drives the valves that control the flow of air in and out of the CPR vest.

Software: Two different programs are used in this system. One collects and

stores the data and the other one analyzes the data and prepares it for use. The
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first  program collects  data  from the user.  This  data  directs  the timing and

durations of the valve opening and closing. Once the user enters this data, it is

sorted chronologically. This information is stored as a file in the PC and is

also sent to the embedded computer by the second program. The embedded

computer then controls the CPR vest as directed by the user input.

2. A portable neuromuscular stimulation system for use in paralyzed 

upper extremities  [4].  Objective:  This  research  aims to  design  a  portable

system for neuromuscular stimulation of paralyzed arms. 

Hardware: The hardware for this system was located in three separate PCB’s.

These  were  for  the  processor,  signal  conditioning  and  stimulation  output

respectively.  The  CPU  used  was  a  Motorola  CMOS  MC146805E2

microprocessor. An 8-bit programmable timer, 112 bytes of RAM, a 64Kbit

EPROM, eight channels of ADC and DAC were implemented on the same

PCB. The signal conditioning hardware included two channels of gain and

low-pass filtering. The stimulation output circuitry was located on the third

circuit  board  and consisted of  intra-muscular  electrodes  that  are  implanted

percutaneously. This system uses input from the user to function. The input

goes to the signal conditioning hardware and then through an ADC to the

microprocessor system, which makes the decision on the stimulation output.

Software:  The  system  software  was  developed  on  a  DEC  minicomputer

system and was written in assembly language. A cross assembler generates the

object  code for  the  microprocessor.  A PROM programmer is  then used to

enter the object program into the EPROM.

10



3. System architecture for a digital signal processor based microcomputer

for use in a multielectrode cochlear implant system [16].  Objective: This

research aimed to implement a multielectrode cochlear implant system.

Hardware:  The  hardware  was  based  mainly  on  a  Texas  Instruments  DSP

processor. It has 4K of 16 bit program memory, a commercial codec chip, an

interface  chip  for  the  parallel  DSP  and  the  serial  codec  chip,  analog

conditioning chips and an RS-232 interface that is used to download program

code into the ROM.

Software:  DSP  techniques  were  used  to  extract  features  from  the  speech

signal.

4. A microprocessor-based data-acquisition system for measuring plantar

pressure from ambulatory subjects [25]. Objective: The aim of this research

was to design a microprocessor based data acquisition system for measuring

pressure data from ambulatory subjects.

Hardware: The portable microprocessor based acquisition system consists of

14  polymer  pressure  sensors,  14  amplifiers,  8-bit  ADC  a  Hitachi

microprocessor, an 8-kbyte CMOS ROM, four-32Kbyte CMOS RAM’s and

interfacing I/O circuits. Data stored in the portable unit are downloaded to an

IBM-PC through the parallel LPT port.

Software: The software download to PROM is not mentioned in the research

paper.

5. A microprocessor-based multi-channel stimulator for skeletal muscle

cardiac assist [6]. Objective: To design a microprocessor based multi-channel
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stimulator for skeletal muscle cardiac arrest. This is a treatment for chronic

heart failure.

Hardware:  The  system  is  built  using  the  Motorola  MC68HC811

microcontroller.  It  is  used  to  send control  signals  to  an  analog  module  to

generate desired pulse sequences. Pulse sequences are defined using software

and are downloaded into the microcontroller using the RS-232 serial port. The

microcontroller has a built in serial port, 256 bytes of RAM, 2K of EEPROM,

an 8 channel ADC and various timers.

Software:  The  software  was  designed  as  an  easy  to  use  graphical  user

interface. It specifies pulse sequences. These sequences are stored in a file as

events that the microcontroller executes.

6. CMOS Neurostimulation ASIC with 100 channels,  Scalable Output,

and  Bidirectional  Radio-Frequency  Telemetry  [23].  Objective:  This

research designed, implemented and tested a 100 channel Neurostimulation

circuit comprising of a CMOS ASIC chip. A radio-frequency communication

link for power and data was also designed. The ASIC was designed primarily

as a treatment of degenerative disorders of the retina.

Hardware: The overall system comprised of an external image processor, an

external  encoder/transmitter,  internal  receiver/decoder  stimulator.  An image

captured by a CMOS camera, is processed by the external image processor,

which processes the image into a 10x10 array of pixels. Within the external

encoder/transmitter,  each  pixel  is  translated  into  an  encoded  RF telemetry

sequence.  Upon  receiving  the  RF  signal  the  implanted  internal

receiver/decoder  stimulator  decodes  the instruction  received and stimulates

the appropriate electrodes.
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Software: A programmable protocol extracts and pixelizes the acquired image

into a 10x10 pixel array.

7. A Wireless Implantable Multichannel Digital Neural Recording System

for  a  Micromachined  Sieve  Electrode  [1].  Objective:  This  research

developed  a  wireless  implantable  Multichannel  digital  neural  recording

system for a micromachined sieve electrode.

Hardware:  The hardware consists  of three modules,  a microcontroller  with

transmitter  electronics,  a  receiver  circuit  with  instruction  decoder  and  the

electrode module. A Motorola 68HC11 microcontroller was used to generate

serial encoded data to be transmitted over the inductive link. Based on the

channel address and mode of operation different instructions were generated,

transmitted, decoded and executed, thus generating an appropriate waveform

on the electrodes.

Software: The software design for the research was not discussed.

II. RS-232 Serial Port  

1. A Programming and Data Retrieval System for an Upper Extremity

FES  Neuroprosthesis  [10].  Objective:  This  research  aimed  to  design  a

stimulation and data retrieval system for upper extremity stimulation system.

Hardware: The hardware consists of a stimulation unit that has electrodes and

a shoulder position transducer, an electrical isolation pod, an interface module

and an interface  module  controller  box for  user  input.  The  PC is  used  to

download  software  into  the  interface  module.  The  RS-232  bus  is  used  to
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communicate  with  the  interface  controller.  The  PC provides  for  real-time

software programming and data retrieval from the stimulation system.

Software: The software was developed on the IBM-PC. It provided for real-

time communication with the stimulation system

2. Accuracy of Drug Infusion Pumps Under Computer Control [7].

Objective:  This  research  designed  a  prototype  system  to  automate  drug

infusion. To do this a microcomputer was interfaced to a drug infusion pump,

through  a  serial  communications  interface.  The  flow  rate  of  three

commercially available drug infusion pumps with an internal or add-on serial

communication interface was tested under computer control.

Hardware:  The  pumps  were  connected  to  the  PC through  the  RS-232,  to

compare the available infusion pumps in the market.

Software: The software design for the research was not discussed.

3. A Custom-Chip Based Functional Electrical Stimulation System [3].

Objective: This research designed a functional electrical system based on a

custom ASIC chip. Using this system up to 32 chips can be connected serially

to a host computer.

Hardware: In this design, up to 32 chips can be connected to the RS-232 serial

port. Each chip can be addressed individually. Each ASIC chip is able to work

in either master or slave mode. Each system requires one ASIC chip to be in

the master  mode with oscillators  attached.  All  the slave chips  derive their

clock from the master chip. In this configuration, one address is required for

each individual slave chip. Since each chip can control/address 8 stimulation
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channels, this configuration results in an address space of 256 independently

controllable stimulus channels per communication link.

Software:  The  software  uses  library  calls  to  transmit  real-time  program

information to the chips

III. LPT Parallel Port  

1.  A  Telemetry  System  for  the  Study  of  Spontaneous  Cardiac

Arrhythmias  [19].  Objective:  This  research  designed  a  data  acquisition

system to gather data relating to cardiac arrhythmias.

Hardware: The hardware consists of two main components. The implantable

unit  and  a  back  pack  unit.  The  implantable  unit  consists  of  analog  input

electrodes, multiplexers and an ADC. The back pack unit consists of a custom

designed serial card, that converts serial data from the implanted electrodes to

parallel data that can be read by the PC parallel port. The received data is then

processed by a CPU and prepared for transmission via a wireless LAN card.

The data was received from the test subjects directly on the LAN, and thus the

localization of data analysis software was eliminated.

Software:  The  software  was  written  using  a  commercially  available  data

viewing and analysis language PV-Wave. Special routines were implemented

to provide custom viewing functions and to speed input/output and plotting

functions.
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IV. PC Bus: Custom Hardware  

1. A 16-channel 8-Parameter Waveform Electrotractile Stimulation 

System  [11].  Objective:  To  study  the  psycho-physiological  performance

associated  with  various  stimulation  waveforms  by  designing  a  general-

purpose electro-tactile stimulation system.

Hardware: The stimulation system consists of a waveform generator, a PC,

and  analog  system  (ADC  and  DAC’s),  voltage  to  current  converters,

knobs/sensors and electrodes.  The knobs/sensor analog data is converted to

digital format using the ADC/DAC’s in the analog module. The PC through

the  PC bus reads  this  digital  data.  The PC then outputs  timer  data  to  the

waveform generation module. Once the waveform generator determines the

wave shape, it is passed on to the voltage-to-current converter and then to the

electrodes.

Software:  the  PC  through  the  connected  bus  controls  the  entire  system.

Customized  software  package  translates  a  user  input  file  containing

commands for all waveform parameters. All software was written in Turbo C

and Turbo assembler for time critical tasks.

2. Computerized Trancutaneous Control of a Multichannel Implantable 

Urinary Prosthesis [20]. Objective: This research describes a PC interface of

a multi-channel, implantable, urinary prosthetic device.

Hardware: The hardware for this  system consists of six modules.  The first

three  are  an  IBM-PC,  a  microcomputer  hardware  interface,  and  an  AM

modulator. The second group consists of an AM demodulator, an AC to DC
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converter and a multi-channel CMOS chip. The outputs of the CMOS chip are

connected  to  electrodes.  The microcomputer  hardware  interface  is  used  to

convert parallel data from the PC bus to serial data that is used by the AM

modulator  for  transmission.  Once  the  data  is  received  by  the  AM

demodulator, it is passed onto a multi-channel CMOS chip, which is basically

a  microprocessor  that  executes  24-bit  command  words  at  300Kbits  per

second.  In  the  output  stage,  the  CMOS chip  contains  control  and  current

source blocks to interface with the implanted electrodes.

Software: The software designed was a multifunction program that allowed

the user to communicate with the stimulator hardware. All the I/O tasks were

programmed in assembly language.  The data analysis  and processing tasks

were designed in  Pascal.  The software  was designed to  accept  commands

from a basic user interface, or from a command file.

V. PC Bus: Commercial Hardware  

1. A New Approach to Man Machine Communication for Computerized 

Microscopy  [13].  Objective:  The  research  aimed  to  design  a  new

computerized  microscope.  This  microscope  was  fitted  with  objective  and

stage encoders and a built in high-resolution computer display to superimpose

dialog, drawing and messages onto the optical microscope image.

Hardware: The hardware consisted of a microscope, a video monitor driven by

a VGA standard graphics display card, encoder card to control the x and y

position  of  the  microscope.  These  cards  communicate  with  an  IBM-PC

through the PC bus.
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Software: The software is structured as a collection of different modules. One

module is  used to mark any object  of interest.  Another  module is  used to

calculate the size of a particular object.  The software can also display and

store already examined  portions  of  the  sample  under  observation.  Another

module can be used to take printouts. The software is also capable of sharing

the data stored on an internal office network.

2. A Computer-Controlled Research Ventilator for small Animals: 

Design  and  Evaluation  [22].  Objective:  This  research  aimed  to  design  a

computer-controlled ventilator for small animals. 

Hardware: The hardware for the system consisted of an IBM-PC, DAC and

ADC cards installed on the IBM-PC, a linear motor and a linear motor power

amplifier. Three valves were also used to control the airflow into the animal

compartments.  These  valves  were  controlled  using  a  DAC.  The  cylinder

(airflow) and tracheal pressure was measured using a pressure transducer and

converted to digital format using the ADC.

Software: The software design for the research was not discussed.

3. A New Video-Synchronized Multichannel Biomedical Data 

Acquisition System [24]. Objective: This research designed a data acquisition

system  for  bio-medical  data.  The  system  was  video-synchronized  and

simultaneously acquired data with video time codes on a hard drive.

Hardware: The system used a video camera connected to a video tape recorder

(VTR). The VTR was connected to a TV monitor and to an interface board.

Biomedical data is also routed to this interface board. This interface board is
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connected  to  an  IBM-PC  compatible  Data  input/output  card  (national

instruments).  The  system  records  storage-intensive  video  images  onto  a

videotape and simultaneously acquires biomedical data and video time codes

onto a computer hard drive.

Software:  LabView graphical  programming  was  used  to  program the  data

acquisition, processing, storage and replay and VTR control.

4.  A  Multichannel  Continuously  Selectable  Multifrequency  Electrical

Impedance Spectroscopy Measurement System [8]. Objective: To design a

multichannel,  multifrequency  electrical  impedance  spectroscopy  (EIS)

measurement system.

Hardware:  The  EIS  was  designed  to  be  modular  to  enable  upgrade  and

modification of any component as necessity dictated. The computer used to

control  the  EIS  was a  200 MHz Pentium pro.  EIS channel  modules  were

implemented  on  custom  PCB’s.  Each  PCB  controlled  8  channels.

Communication  between  the  PC and  the  EIS  cards  was  achieved  using  a

commercial digital I/O card. A waveform generator was used that was capable

of generating arbitrary functions by direct signal synthesis. Data acquisition

was also performed using a commercial board that had 4 input channels, with

a 200KHz rate and a 16-bit resolution.

Software:  The  software  was  written  using  libraries  provided  by  the

commercial board providers. The hardware interface software for the EIS was

implemented as an ActiveX control in C++. The user interface was designed

and implemented in Visual Basic.
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5. A Fast digitally Controlled Flow Proportional Gas Injection System for

Studies in Lung Function [12].  Objective: To design a device used for gas

injection in mechanically ventilated patients.

Hardware:  The  system  included  a  PC,  an  ADC,  a  pressure  sensor

demodulator,  flow  sensor  and  a  valve  array.  The  flow  sensor  detects  the

pressure of the gas and the pressure transducer converts this information to an

analog signal. The PC then converts this analog signal into digital format for

use in determining the pressure. The software in the PC then regulates the

valve  array  to  increase/decrease  the  amount  of  gas  flowing  into  the  flow

sensor, and thereby to the patient.

Software: The software design for the research was not discussed.

6.  Computer  Controlled  Mechanical  Stimulation  of  the  Artificially

Ventilated  human  Respiratory  System  [15].  Objective:  To  design  a

computer controlled artificial lung to simulate various lung pathologies.

Hardware: The hardware used an existing mechanical simulator including the

necessary sensors, actuators, interface electronics and controllers. The main

compartment is an air compartment with a piston that can be controlled using

an electrical motor. The air compartment was connected to a flow-resistance

compartment.  The  resistance  compartment  also  has  a  resistance  sleeve  to

control the resistance of airflow. The functioning of the system was studied at

different flow resistance settings. The flow resistance sleeve was positioned

using a servo-motor through a ADC. The ADC was also used to input the

various physical parameters of the resistance compartment and converted into

digital format. A motion controller card was then used to run a servo- motor

for the main air compartment.
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Software: The real-time software was written in MATLAB by communicating

with the interface card using the real-time toolbox available with MATLAB.

7. BCI2000: A general purpose Brain-Computer Interface System [21].

Objective:  To  design  a  universal  computer-brain  interface  model  to  assist

severely motor-handicapped patients.

Hardware:  The  system  model  was  designed  using  ADC,  which  received

amplified and filter brain EEG signals. The computer software then processed

the  signals  internally.  The  system  model  was  then  implemented  using

different  hardware  components  (PC  and  Data  acquisition  boards).

Performance  was  measured  using  the  different  hardware  components.  The

systems were compared for output latency, jitter,  clock jitter  and processor

load.

Software: The software was implemented in the C++ libraries provided by the

board manufacturer.

8. Development of Brain-Computer Interface: Preliminary Results [18].

Objective:  This  research  aimed  to  evaluate  the  feasibility  of  using  EEG

signals  for  control  and  communication  with  a  computer,  thereby  moving

animated objects on the computer screen.

Hardware:  The  hardware  consisted  of  a  PC,  EEG  amplifiers  and  a  data

acquisition card. The subject is placed in front of the screen, and gel filled

electrodes are placed on specific, predefined locations on the scalp. An EEG is

used  for  signal  amplification  and  the  acquisition  card  is  used  for  signal

digitization. The computer also has a video card the splits the video output to

two high-resolution monitors.
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Software: The software design for the research was not discussed.

9.  Implementation  of  a  Telemonitoring  System for  the  Control  of  an

EEG-Based Brain-Computer Interface [17].

Objective:  This  research presents  a remote  monitoring  system for an EEG

based brain-computer interface.

Hardware: The hardware consists of three major components, the supervisor

system, the patient system, and network system. The brain computer interface

consists of a laptop, a National Instruments data acquisition card, a PCMCIA

card and an EEG amplifier. This system is connected via a network cable and

a network card to a multimedia PC. The monitor system at the supervisor end

serves as a monitoring station for training purposes.

Software:  All  three systems use the Microsoft  Windows operating  system.

The  brain  computer  interface  (BCI)  is  programmed  using  MATLAB  and

SIMULINK.  Software  like  PCAnywhere  and  Netmeeting  were  used  for

training purposes.

 

VI. PC Bus: Hybrid Hardware  

1. A Real-Time Experimental Prototype for Enhancement of Vision 

Rehabilitation  using Auditory  Substitution [5].  Objective:  This  research

designed  a  prototype  system  for  the  vision  rehabilitation  using  auditory

substitution.

Hardware: The hardware consisted of the following components: a miniature

camera  to  capture  visual  stimulus,  a  video  digitizer,  2  sound  production

boards  (one  for  experimenter  and  one  for  subject,  each  is  connected  to  a
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headphone) and video monitors. The image digitizer is connected to the PC

through the bus and is run continuously in frame grabbing mode. The 2 sound

cards were custom designed using off-the-shelf  music processors and were

also interfaced with the IBM-PC through the bus.

Software:  The  software  was  written  in  C.  The  software  initialized  all  the

components of the system and started the frame grabber. The image acquired

by the camera was processed and displayed and then converted into sound

using custom algorithms.  The sound amplitude  was then transferred to the

sound cards through the PC bus and then output to the headphones.

2.Wireless In-Shoe Force System [14].  Objective: This research presents a

wireless in-shoe force system to acquire, process and transmit foot-floor force

information that has been proven feasible for use with normal and paraplegic

subjects.

Hardware:  the  system  consists  of  various  sub-systems:  insole,  transmitter,

receiver  and  PC/Operator  interface.  The  insole  measures  the  actual  force

applied between the foot and the floor at four or six key points under the foot.

Force  applied  to  the  foot,  gets  converted  into  voltage,  which  is  further

processed and used as an input into an analog to digital  converter.  Digital

voltage readings  are  then  used by a  microcontroller  to  compute  the actual

force in pounds. A transmitter system then transmits the data to an external

receiver.  The  receiver  formats  the  received  data  into  an  appropriate  data

structure required by an external processing unit. The PC/Operator subsystem

prepares the transmitter for data acquisition by calibrating the force sensors

for a particular person. The subsystem consists of an IBM compatible PC and

a special  serial interface.  The transmitter  is calibrated using a conventional
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serial interface. The program is downloaded into the transmitter using a serial

connector.

Software: The software design for the research was not discussed.

VII. USB: Commercial Hardware  

Brain-Computer Communication and slow cortical Potentials [9].

Objective: To design and implement a brain-computer interface using slow

cortical potentials.

Hardware:  The hardware consisted of a PC connected to an EEG machine

through the USB. The system is designed for used in a closed loop. The EEG

acquired brain signals  and the computer  processed (amplified  and filtered)

these  signals  and accordingly  the  brain-computer  user  interface  performed

certain  functions.  The  occurrence  of  certain  events  then  triggered  an  eye

movement signal that proceeded in the same fashion to the PC and performed

another function and so on.

Software: The software design for the research was not discussed.

2.2 ANALYSIS OF HARDWARE ARCHITECTURES

 We can see a trend in the above overview. The earliest studies were done using the

embedded architecture, and then came the PC Serial and Parallel port. Years later the PC

bus was extensively used as PC became widely used. Since in the early days of the PC,

there were limited hardware options available, and most people chose to design custom

built hardware to interface with the PC bus. Then as more and more commercial vendors

provided various solutions, researchers started using commercial off-the-shelf hardware

and sometimes used a combination of custom and commercial solutions. More recently
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there has been significant shift in the communication interfaces available in a PC. The

Universal Serial Bus (USB) is a serial port but with significantly higher bandwidth than

the original serial port. Due to the higher performance of USB and the standardization of

the port, many commercial hardware providers are developing USB based hardware that

can be exploited by bio-medical researchers.

This research designed and implemented a custom USB device for use in a research

project that is discussed in chapter  3.  It  also evaluates  the performance of USB as it

relates to the research and to other more general applications. The device implemented to

complete this research can be easily modified to be used as a generic custom-built USB

device.
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CHAPTER 3

MOTIVATION FOR PRESENT WORK

The custom USB device mentioned in section 2.2 was designed and implemented for

use in the Visual Prosthesis (VP) project currently under research in our laboratory. The

VP project  aims to  design,  fabricate  and test  a  multi-channel  transcutaneous,  cortical

stimulation  system to  be  used  in  a  prototype  of  an  artificial  vision  system.  A block

diagram of the proposed prototype is shown in figure 3.1. The aim is also to provide a

minimum of 256 implantable cortical electrodes. The figure in 3.1 is a diagram of a sub-

module that addresses and stimulates  only 64 electrodes.  Four such sub-modules will

increase the number of electrodes to 256.

Figure 3.1 VP Prototype Block Diagram for a 64 electrode Sub-module.

Using a design employing smaller sub-modules has advantages that are beneficial for

the  VP project.  The  power  supplies  and  transmission/receiving  circuits  of  each  sub-
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module are separate, thus if the power regulation in one module fails, it does not fatally

effect the entire implant. Redundancy is also a main feature of the design inside each sub-

module. Each block chip has its own controller data channel, and each channel on each

block chip has its own current driver, thus in the event of a current driver failing, the

other channels of the block chip will still be usable.

The way such a device would work is as follows. The digital  camera captures an

image and transfers it to the wireless image processor/transmitter. This module pixelizes

the  image  and  makes  a  decision  as  to  which  particular  cortical  electrode  should  be

activated,  how  much  current  should  be  applied  and  for  how  long.   Instruction  for

stimulating single, or groups of electrodes would be sent over the wireless link to the

implanted devices underneath the skin. The bridge circuit of the module then generates

power for system-wide use and accepts reverse telemetry for transmission to an external

module. The demodulator generates the master clock, data clock, timer clock, serial data

stream and other control signals. These signals are then sent to the controller chip and are

shared  by all  block-chip  data  channels.  The controller  chip  is  a  finite  state  machine

(FSM)  that  decodes  the  incoming  instructions,  issues  the  instructions  to  their

corresponding destinations  (8-channel  block chips).  The block chips then execute  the

instructions  they  receive  by  generating  waveforms  on  one  or  more  electrodes  as

specified, to generate a pixelized image for the patient.

To design the prototype system described above, various intermediate systems need

to be devised and tested on real animal/human subjects. One such stimulator system was

designed and extensively tested to acquire data on visual cortex view-field mapping. This

system is described in detail in section 3.1 along with disadvantages when considering

system flexibility.

3.1 VISUAL PROSTHESIS STIMULATOR SYSTEM

27



A benchtop, visual prosthesis stimulator system was designed, as part of an earlier

phase of the visual prosthesis project to have the capability to address and control 128

electrodes. The goal of this phase was to create a benchtop stimulator to evaluate various

stimulation  techniques  in  an  animal  model,  and  to  evaluate  the  design  from  an

implantable system standpoint. The benchtop stimulator provided a basis for the design

of the USB interface that is the subject of this work.  This system was comprised of 16

block chips, each having 8 addressable electrode channels. The system was designed to

optically  isolate the input signals of the block chip from the computer.  On most bio-

medical  systems an optically  isolated implant  is  required to protect  against  unwanted

voltage spikes on the computer power supply, affecting the signals going to the implant.

Since the complete system was powered using a 12-volt lead-acid rechargeable battery, in

addition to using the optoisolators, the implant was completely isolated from any AC

power  supply.  In  this  initial  benchtop  system,  a  high-performance  PC  was  used  in

conjunction with a commercial off-the-shelf digital input/output (DIO) card from Adlink

technologies,  as the interface to generate and issue instructions to the stimulator.  The

DIO card was programmed to output  instructions  to  the stimulator  system,  using the

vendor provided C++ and Visual Basic libraries. A graphical user interface was designed

in  Visual  Basic  to  simplify  the  instruction  generation  process.  To  understand  the

limitations of this stimulator system, a deeper understanding of the system architecture is

required.  This  includes  the  DIO card  and the  block  chip  architecture.  Doing so  will

clearly  demonstrate  the  limitations  and  provide  in  insight  into  the  various  available

solutions to eliminate and effectively deal with those limitations.

I. The NuDAQ PCI-7300 Digital Input/Output Card. The DIO card is a PCI

form factor ultra-high speed card with 32 input/output channels. It performs

high-speed data transfers using bus-mastering DMA via the 32-bit PCI bus
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architecture. The maximum data transfer rates can be up to 80MB per second.

Extensive software support is also provided with the card. Software drivers for

packages like LabView, HP VEE, DASYLab etc. are provided. Libraries for

Borland  and  Microsoft  C/C++,  Visual  Basic  are  also  provided  for  both

Windows and Linux platforms.

II. Block-Chip Architecture. The logic level diagram of block-chip circuitry, as

shown in figure 3.2, has 5 input signal lines, and 4 power lines, 8 stimulation

channels. Each channel consists of a 4-bit timer and 7-bit current output DAC.

The DAC produces  the  required  biphasic  pulse and the timer  controls  the

duration of the pulse. Generating a pulse requires a 16-bit data stream to be

read in  to  the  shift  register.  The first  3  bits  that  are  read  are  the  channel

address lines, AD2, AD1 and AD0 respectively. These address lines set the

multiplexer to the appropriate channel. The next 7 bits are the amplitude bits

meant  for  the  DAC and are read in  as  A6,  A5,  A4,  A3,  A2,  A1 and A0

respectively. The next 4 bits are the timer bits that decide the duration of the

output pulse and are used as inputs for the 4-bit Timers. The last two bits are

the polarity and holdoff bits respectively. The polarity bit decides whether the

output pulse will have the cathodic phase or anodic phase first. The holdoff bit

is used for simultaneous stimulation. If it is set to 0, stimulation will start at

the next rising edge of the TCK, after the rising edge of the LE. If it is set at 1,

stimulation will not begin until the next rising edge of the TCK after SIM is

asserted.
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Figure 3.2. Block-Chip Architecture.

     1.   Signal Description: 

a) DIN:   This is the serial 16-bit data instruction that is stored in the

shift register.

b) DCLK:   This is the clock used to shift the 16-bit data into the

shift register. The frequency of this clock was set to 5MHz.

c) LE:   This  is  the  latch  enable  signal  that  latches  the  13-bit

waveform attribute bits into one of the 13-bit latches shown in

figure 3.2.

d) TCLK:   This  is  the  clock  used  by  the  4-bit  timers  to  output

waveforms with the desired pulse width duration.
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e) RESB:   A logic low (0V) on the RESB line resets the 4-bit timers

and  the  state  machine  logic  circuit,  thus  terminating  all

stimulation pulses currently in progress.

f) SIM:   The  SIM  line  is  used  to  generate  pulses  on  multiple

channels simultaneously. The rising edge of the SIM sets a flip-

flop, and on the next rising edge of the TCK, all the channels

with the holdoff bit set will start stimulating simultaneously.

2.   Timing Description. Figure 3.3 shows the timing characteristics of the

block chip along with minimum times for certain signal lines. Before a block

chip  can  start  stimulating,  it  needs  to  be  provided  a  16-bit  instruction  as

described above. When the DIN signal is settled in any one particular state, a

rising edge occurs on the DCLK signal, thus shifting in the state on the DIN

signal into the shift register. This keeps repeating for 15 more DCLK cycles to

shift in all the 16 bits. Once the instruction has been read in, the LE signal is

used to latch the data into the 13-bit latches in the block chip. The remaining

3-bits  are used to decide the address of the channel,  for which the data is

meant. The LE pulse is supposed to go high at least 200ns after the last data

bit has been read in and it should remain high for at least 100ns. In addition,

the minimum time between the rising edge of the LE and the next rising edge

of  the  TCLK  should  be  200ns.  If  this  timing  constraint  is  not  met,  the

stimulation starts normally at the next rising edge of TCLK.

31

LE

Iout

Pwmim
T

su3

T
su2

T
su1

DIN

AD2 AD1AD0  A6   A5   A4   ….    P     H

DCLK

TCLK



Figure 3.3. Block-Chip Timing Diagram.

Tsu1 = Minimum time data must be stable before rising edge of DCLK.

Tsu2 = Minimum time between clocking in of last data bit and rising edge of 

    LE.

Tsu3 = Minimum time between the rising edge of LE and the rising edge of 

TCLK.  If  this  time  constraint  is  not  met,  stimulation  will  begin

normally at the next rising edge of the TCLK.

III. DIO card,  Block-Chip Interface. The stimulator  system was designed to

address  and stimulate  128 electrodes.  This  required  using  16 block chips,

since each block chip can address  8 channels.  The system diagram of the

complete stimulator system is shown in figure 3.4. Since the DIO card is PCI

based, it conforms to the electrical, functional and timing specifications of the

bus. The PC used had a SCSI bus, as most of the waveform instructions were

stored on the hard drive. To reduce the latency of transferring the instructions

from the drive to the DIO card, the faster SCSI bus was used. The stimulator

bus consisted of the above mentioned block chip signals. Figure 3.5 shows the

stimulator bus in more detail.
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Figure 3.4. Top Level Stimulator Architecture.

Figure 3.5 shows how the bus is connected to the stimulator device. The

signals  that  are  common to  each block  chip,  are  as  follows:  DIN,  DCLK,

TCLK, RESB and SIM. The unique signals are the LE signals, i.e., each block

chip has its own unique LE signal to let the user control which block chip is

stimulated at what point in time.
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Figure 3.5.Stimulator Bus –Block Chip Interface.

     

Even though different electrodes in different chips may require waveforms

of different stimulation parameters, the architecture uses a common serial data

line DIN. Doing so is safe from a stimulation standpoint because of the fact

that  the  respective  LE  lines  that  will  actually  trigger  the  stimulation  as

describe above. Hence for all the 16 block chips we need a bus that is 21 bits

wide, five lines for DIN, DCLK, TCLK, RESB and SIM and 16 lines for LE0

through LE15.

IV. Limitations  of  this  architecture. The  DIO  card  used  for  the  stimulator

system has 32 input/output lines. Since the stimulator system used 21 lines,

using  the  DIO card  to  control  the  stimulator  system was a  good solution.

Future  generations  of  stimulator  systems  will  require  more  than  128

electrodes. The next generation stimulator systems as proposed in the visual

prosthesis  project  and  discussed  above,  have  already  been  theoretically

devised,  however,  due  to  unfavorable  electrode  density,  implanting  1024

electrodes is years away. However, planning for the interface to communicate

with a 256 channel system is presently underway.  Since for 256 channels

there would be 32 block chips, we would require 32 digital output lines in

addition to the 5 common lines for the whole system. This makes the total

number of digital  lines  to 37 lines.  The current choice of the DIO card is

unable  to  satisfy these  requirements.  The solution  lies  in  using 2 of  these

cards, using a card with more digital lines, or modifying the way in which LE

signals are transmitted, since LE’s require most number of lines. We now look

at  each  of  these solutions.  Using two DIO cards  is  certainly  possible,  but
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given  the  cost  of  each  card  ($900  each)  and  the  amount  to  computing

resources used for using such a system and the complexity of programming

each card, a simpler solution is required.  In addition, use of the DIO card

does  not  allow  for  easy  portability  between  computers,  especially  for

notebook computers,

Using  a  DIO  card  with  more  number  of  digital  lines  is  delaying  the

inevitable.  Eventually,  stimulator  systems  would  require  more  and  more

number of electrodes. When that happens, a similar problem would arise. 

The other solution is to generate the LE in a different fashion. The LE’s

could be transmitted serially on one digital line. The modification requires the

design and fabrication of another chip with a 32-bit shift register. Additional

logic would decide which block chip needs to be sent an LE signal. Even if we

divide the LE’s into two groups and have two 16-bit shift registers, it would

require an extra digital  line and almost  certainly more chip area.  The chip

would also require 32 output lines for the LE’s going to 32 different block

chips. As chip area increases so does its cost to fabricate. Another reason a big

chip area or even an additional chip is a negative quality is that these chips

will eventually be implanted into the visual cortex, and in case of implants,

the smaller they are the more invisible they are to the user. Hence designing

the next generation stimulator requires investigating new PC communication

technologies, some of which are discussed in section 3.2.

3.2 ALTERNATIVE COMMUNICATION LINKS

It is clear that to design a stimulator system that is easy to use and program is the

basis on which it will be accepted widely or not. To do so, the PCI bus based systems
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need to be re-evaluated. One important factor of doing so, besides the above-mentioned

technological hurdles, is the cost of these commercial off-the-shelf solutions. To reduce

cost, one must consider the latest communication links that are standard with PC’s today.

These are the USB, Firewire, parallel port and the serial port. These solutions are not

expensive as they are already proven communication techniques that have are a number

of compatible devices on the market. The parallel port and the serial port are not good

solutions for our problem, as they are slow and new generation neuroprosthetic chips

require a lot of information at high speed to generate complex waveforms for stimulation.

The other two solutions are firewire and the USB. Firewire is a good solution with up to

400 Mbps of data transfer speed. Firewire was rejected for our solution due to the fact

that there are no freely available IP cores. A freely available USB IP core was found and

was the main motivation of using the USB communication link instead of the firewire

link. A brief description of the advantages of the USB is discussed in section 3.3

3.3 ADVANTAGES OF THE USB

One of the most important reason the USB was chosen for this research was the fact

that all PC’s today have USB ports available. The other important reason is that a readily

available,  open source implementation of USB in Verilog RTL was available for use.

Using an open source IP core for the USB, reduced the amount of time required for initial

development,  as  compared  to  designing  a  USB IP  core  from the  ground  up.  It  also

provided with  a  previously  used  and tested  core,  which  increased  our  confidence  of

success.

36



The other technology related advantages are:

I. Speed: It  supports  three  speeds,  1.5MBps,  12MBps  and  480MBps.  The

highest speed is 80MBps more than that of firewire.

II. Reliability: The  hardware  specification  for  drivers,  receivers  and  cables

eliminate most noise, in addition to the specification requiring CRC checks.

III. Low cost: Even though USB is more complex compared to older interfaces,

the cables and connecters required are less expensive.

IV. Availability: All PC’s developed today have USB compatible connectors.

V. Flexibility: USB provides for different kinds of data transfers, enabling its use

for different kinds of peripherals.

VI. Support: Good support for developers, both software and hardware. It is also

extensively supported by almost all major operating systems.

CHAPTER 4

THE UNIVERSAL SERIAL BUS

The  initial  development  of  the  USB  was  seeded  by  three  motivations,  namely,

connection of the PC to the telephone, ease-of-use and port expansion. Before the USB, it

was  well  understood  that  the  next  generation  of  technology  lay  in  the  merger  of
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computing and telecommunication. The traffic of human centric and machine centric data

depends on inexpensive communication links. Such a link already exists in the form of

the  Internet.  Due  to  the  fact  that  computing  and  telecommunication  technologies

developed in isolation to one another, an easy-to-use link between the two was needed.

The USB was devised as the answer. To make it easy to use, the USB was designed to be

plug-and-play. This was made possible by developing a large number of application and

systems software for everyday electronic equipment like digital cameras, mice, keyboards

etc. The extensive availability of an additional PC port enabled the explosive rise in USB

compatible computer peripherals. 

Due  to  recent  advances  in  computer  processing  power,  PC’s  are  now capable  of

processing a lot of data. This led to the development of USB 2.0. User applications like

digital imaging and video have demanded a higher bandwidth communication link with

the PC, thus USB 2.0 was designed to transfer data at up to 480 Mb/s.

4.1 USB ARCHITECTURAL OVERVIEW

The  USB  connects  devices  with  a  host.  The  USB  interconnect  is  a  tiered  star

topology. A hub is at the center of each star and each wire segment is a point-to-point

connection between the host and hub, or a hub and a function. This topology is shown in

figure 4.1.
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Figure 4.1. USB Topology.

Due  to  the  timing  constraints  allowed  to  hub’s  and  cable  propagation  times,  a

maximum of 7 tiers are allowed. In these 7 tiers, a maximum of 5 non-root hubs are

allowed. In tier 7 only functions can be allowed. In a USB system there can only be one

host. The USB interface in the host computer is called the host controller. A root hub is

integrated within the host system to provide one or more USB port attachment points.

USB devices fall into two categories: hub’s that provide additional attachment points for

other USB devices, and functions, which provide capabilities to the computer system.

USB devices conform to certain standards defined by the USB specification, namely

their comprehension of the USB protocol, their response to standard USB operations such

as configuration and reset. USB transactions take place on a 4-wire cable. The cable wire

specification is shown in figure 4.2.
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Figure 4.2. USB Cable.

There are three data rates available for USB transfers. High signaling rate is 480 

Mb/s, full speed rate is 12 Mb/p and a limited capability low-speed signaling mode is also

defined at 1.5 Mb/s. USB 2.0 host controllers and hubs provide capabilities so that full-

speed and low-speed data is transmitted at high speed between the host controller and the 

hub, but transmitted at full or low-speed between the hub and the full-speed or low-speed 

device. Having this capability minimizes the impact that full-speed and low-speed 

devices have on the bandwidth available for high-speed devices. This is obvious from the

fact that data travels at full or low speed on when absolutely necessary.

There are two ways in which USB devices can be powered. USB devices can be bus 

powered or self-powered. Bus-powered devices draw power from the power lines 

provided in the USB cable, as shown in figure 4.2. The power available for each USB 

port is limited to about 500mA, thus all the bus-powered devices cannot draw more than 

500mA of current. If more devices need to be connected, they need to be self-powered. 

Such devices usually are wall-plug-in voltage regulators or battery powered systems.

The USB is a polled bus, i.e., the host controller initiates all data transfers. Most bus

transfers  comprise  of  up  to  three  packets.  The  host  controller  sends  a  USB  packet

describing the type and direction of the transaction, the USB device address and endpoint

number. This packet is called the token packet. The addressed USB device decodes the

information in the setup packet and either waits for the next stage or initiates the next
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stage itself, depending on the direction of the data transfer. This stage is also known as

the data stage. The source of the data, as specified by the setup packet starts the transfer.

The  destination  responds  to  the  data  stage  by  sending  an  acknowledgement,  stating

whether or not the transfer was successful.

The USB data transfer model between a source and destination on the host and an

endpoint on a device is referred to as a pipe. There are two types of pipes: stream and

message. Pipes have associated data bandwidth, transfer type and endpoint characteristics

like directionality and buffer sizes. An endpoint can be considered as a source or a user of

information/data. For instance, a simple USB device like a flash drive has a minimum of

2 endpoints. One endpoint acts as a sink, i.e., it accepts data from the host computer and

stores it on flash memory. Another endpoint acts as a source, i.e., it sends data to the host

computer.  Each  endpoint  has  its  own pipe  associated  with  it.  Most  pipes  come into

existence when a device is connected to a host computer. One message pipe called the

Default Control Pipe always exists once a device is powered, in order to provide access to

the device’s configuration, status and control information.

4.2 USB TRANSFER TYPES

There are four data transfer types supported by the USB: control, bulk, interrupt and

isochronous.

I. Control  Transfers: Control  transfers  have  two  uses.  They  are  used  to

facilitate transfers specified by the USB specification and used by the host to

learn about and configure devices, and to carry requests defined by a class or

vendor for any other purpose.

Every device is required by the USB specification to support control transfers

over the default pipe at endpoint 0. As discussed above, each transfer consists

of three stages: Setup, Data (optional) and the Status stages. A stage could
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consist  of  one  or  more  than  one  transactions.  At  minimum  every  control

transfer must have a Setup and Status stage. The use of the data stage depends

on the kind of requests by the host or the device. All control transfers require

that all information flow in both directions, the control pipe used both IN and

OUT addresses of the endpoint 0. An IN transaction means that information

travels  from  the  device  to  the  host,  and  an  OUT  transaction  means  that

information  travels  from  the  host  to  the  device.  On  other  words  all

transactions are looked at from the host’s perspective. In control read transfer

the data in the Data stage travels from the device to the host and in a control

write transfer, the data in the Data stage travels from the host to the device.

The token packet contains a PID that identifies the transfer as a control

transfer. The data transfer contains information about the request, including

request  number.  The  USB  specification  defines  11  standard  requests.

Successful  enumeration  requires  specific  responses  to  these  requests.

Enumeration is discussed in detail in section 4.3.

The data size for control transfers can vary according to speed. Low-speed

devices  can have a maximum data  size of 8-bytes.  For full-speed the size

could be 8, 16, 32 or 64 bytes. For high-speed the maximum data size must be

64-bytes.

The  host  makes  its  best  effort  to  ensure  that  all  control  transfers  get

through  as  quickly  as  possible.  The  host  reserves  a  portion  of  bandwidth

specifically  for control  transfers:  10% for low and full-speed and 20% for

high-speed transfers.

If a device does not return an expected handshake packet during a control

transfer,  the  host  tries  again  two  times.  If  after  a  total  of  three  tries  no
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response is received, the host notifies the software that requested the transfer

and stops communicating with the endpoint until the problem is solved.

II. Bulk Transfers: Bulk transfers are used for transferring data when timing is

not critical. Such a transfer can send large amounts of data without clogging

the  bus,  because  transfers  defer  to  other  transfer  types  and  wait  for  bulk

transfers until bandwidth is available. However, if there are no other pending

transfer types, bulk transfers are the fastest.

Only full and high-speed devices can do bulk transfers. A bulk transfer

consists of one or more IN or OUT transaction. Since a transfer’s transaction

must  be all  IN or  all  OUT,  transferring  data  in  both directions  requires  a

separate pipe and transfer for each direction.

A full-speed bulk transfer can have a maximum packet size of 8, 16, 32, or

64-bytes. For high-speed a maximum of 512 bytes is allowed. The host reads

the maximum supported size during enumeration.  If  the amount  of data  is

more than the maximum allowed, then the data transaction is broken down

into multiple data packets.

The host controller guarantees that bulk transfers will eventually complete,

but does not reserve any bandwidth for them. Control transfers are guaranteed

10% bandwidth for low and full  speeds and 20% for high-speed transfers.

Interrupt and isochronous transfers use the rest of the bandwidth. Hence if a

bus is very busy, a bulk transfer may take very long. If there are no devices

that use interrupt or isochronous transfers, connected to the bus, bulk transfers

are completed very quickly. 

Bulk  transfers  use  error  detection,  hence  they  are  used  in  applications

where transfer of correct  data is  required.  If  the device does not return an
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expected handshake packet, the host tries up to two times more. Bulk transfers

are designed in such a way that ensures that no data is lost. While they do not

have  any  error  correcting  facility,  they  require  that  erroneous  data  be

transmitted again till there are no errors.

III. Interrupt Transfers: Interrupt transfers are useful when data has to transfer

within a specific amount of time. Typical applications are keyboards, mice

and  other  human  interface  devices.  The  bandwidth  available  for  interrupt

transfers is limited for low and full-speed devices, but high-speed increases

the limits and enables an interrupt endpoint almost 400 times as much data as

full-speed. For low-speed devices, the maximum packet size can be any value

from 1 to 8 bytes. For full-speed, the maximum packet size can range from 1

to 64-bytes. For high-speed the range is 1 to 1,024-bytes.

IV. Isochronous  Transfers: Isochronous  transfers  are  streaming,  real-time

transfers that  are  useful  when data  must  arrive  at  a constant  rate,  or  by a

specific  time  and  occasional  errors  can  be  tolerated.  At  full-speed,

isochronous transfers can transfer more data than interrupt transfers, but there

is not provision for re-transmission of data received with errors.

Examples  of  uses  for  isochronous  transfers  include  encoded  voice  and

music  to  be  played  in  real-time.  Unlike  with  bulk  transfers,  once  an

isochronous  transfer  begins,  the  host  guarantees  that  the  time  will  be

available to send data at a constant rate, so the completion time is predictable.

Only full and high-speed devices can do isochronous transfers. Devices

are not required to support isochronous transfers, but certain device classes do

require isochronous data transfers.
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For full-speed endpoints, the maximum packet size can range from 0 to

1,023-bytes.  High-speed endpoints  can have a maximum packet  size up to

1, 024-bytes.

4.3 USB ENUMERATION 

Before applications can communicate with a device, the host needs to learn about a

device and assign it a device driver. Enumeration is the initial exchange of information

between the host and the device, and is the process by which the host learns more about

the device. The enumeration process includes, assigning an address to the device, reading

data  structures  from  the  device,  assigning  and  loading  a  device  driver,  selecting  a

configuration from the available options. Once this is done, the device is configured and

ready to transfer data using any of the endpoints specified in its configuration descriptors.

During the enumeration process a device moves through different device states as

defined  by  the  specification:  Powered,  Default,  Address  and  Configured.  The  steps

described below are a typical sequence of events that occur during enumeration.

1. The user plugs a device into a USB port: This puts the device in the powered

state.

2. The hub detects the device: The hub monitors the voltages on the signal lines of

each port. Every USB device has a 15Kohm pull down resistor on either the D+ or

the D- line. If the hub detects a pull down resistor on the D+ line, the device is

full-speed  device,  if  the  pull  down  resistor  is  on  line  D-  then  the  device  is

configured as a low-speed device.

3. The host learns of the new device: Each hub reports events on its ports to the

host. When the host learns of an event, it sends the hub a Get_port_status request

to find out more about the port.
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4. The hub detects the speed of the device: The hub looks at the signal lines to

determine what the speed of the device is, as described above.

5. The hub resets the device: After the speed is detected, the host asks the hub to

reset  the  device.  This  is  done  by  placing  the  D+ and  D-  lines  at  logic  low.

Normally the logic lines have opposite states, they are required to be placed at

logic low to reset the device.

6. The host learns if a full-speed device supports high-speed: Detecting whether a

device supports high-speed uses two special signal states. In the chirp J state, the

D+ line is driven and in the chirp K state, the D- line only is driven. During reset a

device that supports high speed sends a chirp K. A high-speed hub responds with

alternating  chirp K’s and J’s.  When the device detects  the pattern KJKJKJ, it

removes its full-speed pull-up and performs all transfers at high-speed. If the hub

does not respond to the device’s chirp K, the device communicates at full-speed.

Due to this reason all high-speed devices must be able to communicate at full-

speed. For instance, if the hub does not support high-speed, a high-speed device

should still be able to communicate with the host PC in full-speed mode.

7. The hub establishes a signal path between the device and the bus: The host

asks the hub to remove the device from the reset state to the default state. The

USB registers are in their reset states and are ready to accept control transfers

over the default pipe at endpoint 0. The device can now communicate with the

host using the default address 00h.

8. The host sends a Get_Descriptor request: The host requests the device to send

it  the device descriptor.  This basically  tells  the host about how the host must

communicate with the device, for the duration of the enumeration process. All

types of descriptors are discussed in section 4.4.
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9. The host assigns an address: The host assigns a unique address to the device.

The address assigned earlier is a temporary address given to every new device

being enumerated. 

10. The host learns about the device’s abilities: The host now requests all the other

descriptors that are stored in the device. This enables the host to know how to

communicate with the device and what the device capabilities are.

11. The host assigns and loads a device driver: Once the host goes through the

descriptors, it tries to match the information in there to the information stored in

its driver information files (for Windows). Once there is a match, the operating

system, dynamically loads the driver.

12. The host’s  device  driver  selects  a  configuration: Once  the  device  driver  is

loaded, it requests a configuration by sending a Set_Configuration command to

the device. The device sets the configuration provided by the command, and the

device is ready for use.

4.4  USB DESCRIPTOR TYPES

Descriptors are data structures of information that enable the host to learn more about

the device. Each descriptor contains information about either the device as a whole, or

about a specific functionality. To be compatible with the USB specification, all devices

must respond to requests for standard USB descriptors. The device, hence, must store the

information and respond to requests for the same in an expected format.

The first descriptor that is requested by the host is the device descriptor. It contains

information  about  the  device  as  a  whole,  and specifies  the  number of  configurations

available  in  the  device.  The  configuration  descriptor  contains  information  about  the

device’s  use  of  power  and  the  number  of  interfaces  supported  by  the  device.  Each

interface descriptor has associated with it zero or more endpoint descriptors. After the
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device descriptor is sent to the host, the device receives a request for the configuration

descriptor. After the host receives the configuration descriptor, it also gets to know the

total number of bytes in all the descriptors except the device descriptor. The host then

requests the configuration descriptor again, but this time it requests the device to send all

the  other  descriptors  associated  with  it.  Hence,  all  the  interface  and  corresponding

endpoint descriptors are also sent in one request. Each descriptor type is described below.

I. Device Descriptor

Table 4.1. Device Descriptor.

bLength: The length in bytes of the descriptor.

bDescriptorType: The constant DEVICE (01h), used for the device descriptor.
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(Decimal)

Field Size
(Bytes)

Description

0
1
2
4
5
6
7
8
10
12
14

15

16

17

bLength
bDescriptorType
bcdUSB
bDeviceClass
bDeviceSubClass
bDeviceProtocol
bPacketMaxSize
idVendor
idProduct
bcdDevice
iManufacturer

iProduct

iSerialNumber

bNumConfigurations

1
1
2
1
1
1
1
2
2
2
1

1

1

1

Descriptor size in bytes
Constant DEVICE (01h)
USB spec. Rel number.
Class code
Subclass code
Protocol code
Max packet size for EP0
Vendor ID
Product ID
Device release number
Manufacturer string 
descriptor index.
Product string descriptor 
index.
Serial number string 
descriptor index.
Number of possible 
configuration.



bcdUSB: The USB specification number to which the device and its descriptors are

compatible. For version 1.1, this value will be 0110h.

bDeviceClass: This field is for devices that belong to a class. Values from 1h to FEh 

are reserved for USB defined classes. Not all devices must belong to a class.

bDeviceSubClass: This field specifies the subclass for the device. 

bDeviceProtocol: This field specifies the protocol that the device complies with.

bMaxPacketSize: This is the maximum packet size of the endpoint 0.

idVendor: This is a unique ID for a particular vendor. Vendors who pay a fee, are

given a unique ID that they can use for their products. This value is also stored in the

INF file  for  the  device.  The  operating  system matches  this  value  with  the  value

received from the device and it knows which device driver to load.

idProduct: This ID number is assigned by the device manufacturer to distinguish

between different products.

bcdDevice: This is the device release number in bcd format. This value can also be

used to decide which driver to load.

iManufacturer: This is an optional field. It points to a location, which stores string

information about the manufacturer.

iProduct: This is also an optional field. It points to a location, which stored string

information about a product.

iSerialNumber: This is the index of a string that points to the device serial number.

bNumConfigurations: This is the number of configurations the device supports. A

particular configuration defines the device’s capabilities and features. For instance, a

digital video camera may be designed to function in two modes. One mode might be

recording mode, and another might be playback mode. The camera can only be in one

mode at a particular time. Thus the features of such a camera can be divided into two

49



different configurations, which can be loaded as the user so chooses. The software

can thus function depending on which mode the camera is in.

II. Configuration Descriptor

Table 4.2. Configuration Descriptor.

bLength: The length in bytes of the descriptor.

bDescriptorType: The constant configuration (02h).

wTotalLength: The number of data bytes that the descriptor returns, including all the

interface and associated endpoint descriptors.

bNumInterfaces: The  number  of  interfaces  the  configuration  supports.  The

minimum number is 1.

bConfigurationValue: Identifies  the  configurations  for  configuration  requests.

Should be more than 0.
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Field Size
(bytes)

Offset
(Decimal)

0
1

2

4

5

6

7
8

bLength
bDescriptorType

wTotalLength

bNumInterfaces

bConfigurationValue

iConfiguration

bmAttributes
MaxPower

1
1

2

1

1

1

1
1

Descriptor size in bytes.
Constant CONFIGURATION (02h)

Size of all data returned for this 
config in bytes
Number of interfaces the 
configuration supports.
Identifier for Set_Configuration and 
Get_Configuration requests.
Index of string descriptor for 
configuration.
Self power/bus power settings.
Bus power requirements.



iConfiguration: Index  to  a  string  that  describes  the  configuration.  This  field  is

optional.

bmAttributes: Bit 6 = 1 if a device is self-powered. Bit 5 is 1 if the device supports

remote wakeup feature. Bits 0 through 4 should be 0 and bit 7 must be 1.

MaxPower: Specifies how much power a device requires from the USB.

III. Interface Descriptor

Table 4.3. Interface Descriptor.

bLength: The number of bytes in the descriptor.

bDescriptorType: The constant interface (04h).

bInterfaceNumber: This field identifies the interface. This value should be unique

for every interface.  An interface controls and specifies device resources for every

feature.

bAlternateSetting: When  a  configuration  supports  multiple,  mutually  exclusive

interfaces,  each  interface  must  have  a  descriptor  with  the  same  value  in

bInterfaceNumber but a unique value in bAlternateSetting. Default value is 0.

bNumEndpoints: This is the number of endpoints supported by each interface.

bInterfaceClass: This  field  is  similar  to  the  field  DeviceClass  in  the  device

descriptor.
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Field Size
(bytes)

Description

0
1
2
3
4

5
6
7
8

bLength
bDescriptorType
bInterfaceNumber
bAlternateSetting
bNumEndpoints

bInterfaceClass
bInterfaceSubClass
bInterfaceProtocol
bInterface

1
1
1
1
1

1
1
1
1

Descriptor size in bytes.
The constant Interface (04h)
Number identifying this interface.
Value used to select alternate setting.
Number of endpoints supported, 
except 0.
Class code
Subclass code
Protocol code
Index of string descriptor for the 
interface.



bInterfaceSubClass: This field is similar to the field bDeviceSubClass in the device

descriptor.  The  value  is  a  code  defined  by  the  USB specification,  if  the  device

conforms to a particular subclass of devices.

bInterfaceProtocol: This is similar to bDeviceProtocol.  Its value should be either

user defined or should be pre-defined by the USB specification.

iInterface: This is an index to a string that describes the interface.

IV. Endpoint Descriptor

Table 4.4. Endpoint Descriptor.

bLength: The number of bytes in the descriptor.

bDescriptorType: The constant INTERFACE (04h).

bEndpointAddress: This includes the endpoint number and direction. Bits 0 through

3 are the endpoint number. Low-speed devices can have a maximum of 3 endpoints

(numbered 0 through 2),  full  and high-speed devices  can have 10 (0 through 15)
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(decimal)

Field Size
(bytes)

Description

0
1
2
3
4
6

bLength
bDescriptorType
bEndpointAddress
bmAttributes
wMaxPacketSize
bInterval

1
1
1
1
2
1

Descriptor size in bytes.
The constant Endpoint (05h)
Endpoint number and direction.
Transfer type supported
Maximum packet size supported.
Maximum latency/polling 
interval/NAK rate.



endpoints. Bit 7 is the direction: OUT = 0, IN = 1. Bits 4, 5, and 6 are unused and

must be 0.

bmAttributes: Bits 1 and 0 specify the type of transfer the endpoint supports. 00 =

Control,  01 = Isochronous,  10 = Bulk and 11 = Interrupt.  For endpoint  0 control

transfer type is assumed. Bits 6 and 7 must be 0. Bits 3 and 2 specify synchronization

type,  00  =  no  synchronization,  01  =  asynchronous,  10  =  adaptive  and  11  =

synchronous. In most cases bits 3 and 2 are 00. Bits 5 and 4 indicate usage type: 00 =

data endpoint, 01 = feedback endpoint, 10 = implicit feedback data endpoint, 11 =

reserved. For non-isochronous endpoints bits 2 through 5 should be 0.

wMaxPacketSize: The maximum number of data bytes the endpoint can transfer in a

transaction. Bits 10 through 0 are the maximum packet size from 0 to 1024. All other

bits are set to 0.

bInterval: For full-speed bulk transfers this value is ignored. It is usually used for

interrupt and control endpoints.

The  above-described  descriptors  are  necessary  and  sufficient  for  a  simple  USB

device. The information in these descriptors tells the host everything there is to know

about how a device functions and how it should communicate with it. The descriptor field

values used in this project are shown in appendix B. A detailed description of choice of

transfer type based on the application specification is also provided. In addition to this, an

analysis of bandwidth usage is also done while keeping in mind the latency requirements

of the application device.
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CHAPTER 5

THE USB STIMULATOR DEVICE

The USB stimulator device was designed to investigate the feasibility of using the

USB as  a  communication  link  between  the  PC and the  block-chip.  The  system was

designed and tested successfully first in an FPGA environment. A detailed description of

the hardware prototype is given in chapter 6. This chapter provides an overview of the

logical and architectural design and implementation of the stimulator system.

The main component of the system is the USB core. This core is an open source core

and is freely available for use in research or commercial projects. It has been successfully

used in different research and commercial projects all over the world.

Most USB cores available  require a direct  connection with a microprocessor  or a

microcontroller. This is done so that the descriptor database can be stored in ROM and

changed as needed. Embedded software is responsible for accepting and responding to

descriptor  requests  from the host.  Using such a  core increases  the cost  of the whole

project due to the microprocessor, in terms of economic and labor cost.

Some cores include state  machines  that  automatically  perform the function of the

microprocessor. These state machines recognize, accept and reply to descriptor requests

from the host. Such a core was used for this system. As described in section 5.1, the USB

core reproduces data transferred by the host into a parallel interface of 8-bit packets. This
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parallel interface can then be connected to a microprocessor or custom logic to perform

the required function. A detailed architectural description of the USB core and the two

block chip interfaces is done in the following sections.

5.1 THE USB CORE

The USB core can be divided into different functional blocks. A block diagram of the

blocks and their interconnections is shown in figure 5.1.

Figure 5.1. The USB Core Functional Blocks. 

The USB 1.1 transceiver used for the system was a commercially manufactured IC

chip. The USB port used was a standard type A connector. All the other blocks have been

implemented in Verilog HDL. Some of the above blocks are top-level blocks, i.e., they

consist of more than one lower level Verilog modules. This section also describes the

overall functioning of the USB core from a data-flow perspective.

During enumeration, the host communicates with the USB device and receives the

stored descriptors. Prior to compilation of the Verilog code for the core, the ROM module

is  initialized  with descriptor  attributes  as  described in  chapter  4.  The actual  attribute
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values that  were used are stated and explained later  in this  section.  When the device

receives  a  descriptor  request  from  the  host,  the  protocol  layer  verifies  protocol

compliance. Once the data has been decoded, it is forwarded to the controller module.

This  module  responds  to  the  descriptor  request,  by  reading  the  descriptors  from the

ROM. Once all the descriptors have been read and the operating system has assigned a

driver, the device is ready to receive data from the host. When the host sends the device a

data packet, the protocol layer decodes the data packet and also decodes the destination

information.  If  the data  packet  is  meant  for  endpoint  1,  the data  is  forwarded to the

endpoint 1 FIFO. Once the packet is stored in the endpoint FIFO, it can then be read by

the function. The signals that facilitate the writing of data packets to the FIFO are the 8

data lines, 1 write enable line and 1 FIFO full line. Data is received in 1-byte words. The

timing diagram of a data transfer is shown in figure 5.2.

Figure 5.2. Endpoint Data Transfer Timing Diagram.

For a data packet with 8-bytes of data, the USB core outputs 8-bits of data eight times

to completely store the 8-byte data packet into the FIFO. The timing diagram for an 8-

byte packet is shown in figure 5.3.

Figure 5.3. Timing Diagram for 8-Byte Data Packet.
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Figure 5.4 shows the actual waveform that is seen in a logic analyzer. The signal lines

shown are for Data, endpoint 1 read enable, clock, endpoint 1 write enable, empty and

full signals.

Figure 5.4. Logic Analyzer Waveform.

The system was initially implemented and tested on a customized FPGA development

board. The electrical specifications and diagrams are discussed in chapter 6.

5.2 USB-BLOCK CHIP INTERFACE

This interface was designed to be compatible with the timing diagram discussed in

section 3.1, and shown in figure 3.3. The interface has four lines: DCLK, DIN, TCLK

and LE, as described by the block chip specification in section 3.1. A partial listing of the

Verilog HDL code for this interface is given in appendix A.
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The interface was designed to control a single block chip. Using a single block chip

simplified the implementation and testing of the initial version. The entire interface was

downloaded to an FPGA with the four block chip compatible lines. A block diagram of

the overall system is shown in figure 6.1.

 The system used 2 FPGA’s for its implementation. One FPGA was configured with

the USB core. The second FPGA was configured as the USB-Block chip interface. This

system consisted of only one endpoint. This endpoint was in the form of an 8-byte FIFO.

The  timing  and  functional  specification  of  this  endpoint  1  FIFO is  the  same  as  the

endpoint 0 FIFO described in section 5.1. As shown in figure 5.4, there are 8 writes to a

FIFO in a data packet. After each write, the interface controller is designed to read in the

written byte. Due to a design limitation in the USB core, the controller was designed not

to let the FIFO become full. If the FIFO becomes full, the USB core goes into an infinite

loop, i.e., it writes the same 8-byte data to the FIFO. This sequence of writes and reads

can be seen in figure 5.4.

The data format for the packet is set based on whether the system supports little-

endian or big-endian. Little-endian" means that the low-order byte of the data packet is

stored in memory at the lowest address, and the high-order byte at the highest address.

Big-endian" means that the high-order byte of the number is stored in memory at the

lowest  address,  and  the  low-order  byte  at  the  highest  address.  The  USB  system  as

implemented is a little-endian system. The data, as sent by the PC to the USB core is

shown in figure 5.5.
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Figure 5.5. Interface Data Format.

In figure 5.5, the lower byte 1F is output first on the USB, and subsequently A2 and

then 00 and 00. Once the interface controller receives these bytes, the first 2 bytes are

loaded into a shift-register. Once the 16-bits of block chip data is loaded, it is shifted out.

Although the block chip requires only 2-bytes, the FIFO size for the USB core is set to 8-

bytes.  There are  two reasons for  doing so.  The first  reason is  to  provide for  enough

address space for more than 1 block chips. The stimulator system can be designed to

incorporate 16 or 32 block chips. An extra 16-bit space can be used as LE activation

fields for the block chips. For instance, if for a particular stimulation, block chips 1, 4,

and 7 are required to be stimulated with the same parameters. The first two bytes will

have the block chip data, the next 16 bits will be address mapped from LE0 to LE15.

Thus for block chip 1, 4 and 7, the LE1, LE4 and LE7 bits will be asserted. The controller

then would output an LE pulse on each of the above lines at the same time. This feature,

in addition with the hold-off bit will enable simultaneous stimulation of any electrode

with the same stimulation parameters. The other advantage of having an 8-byte FIFO is

discussed in section 5.3.
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5.3 USB-NEUROTALK INTERFACE

The NeuroTalk family of integrated chips is a new family of chips being designed at

the Illinois Institute  of Technology keeping in consideration the specific  needs of the

neuroscience  community.  The  neuroscience  researcher  has  traditionally  used

commercially  available  integrated  circuits  (IC).  Since  these  IC’s  have  a  variety  of

different applications, they are manufactured in bulk, thus providing a low cost solution

for neuroscience and other applications, both commercial and research.

Neuroscience is currently proceeding towards the study of a population of neurons,

rather than single neurons. Arrays of electrodes are being used to stimulate and record

neural  signals.  It  is  well  recognized  that  significant  advances  in  the  field  of

Neuroprosthesis will come about with the understanding of how to use large number of

electrode  arrays  as  a  two-way  informational  link  with  the  brain,  or  with  neurons

anywhere  else.  Due  to  the  large  number  of  interface  channels  required,  the  circuit

requirements  for  neuroscience  devices  are  growing  with  respect  to  commercially

available components. Due to these reasons many researchers, either have to adapt, or to

make a compromise in order to use commercially available components. To solve this

problem, the NeuroTalk interface was designed and the first block chip that supports such

an interface was fabricated. For this research, a USB-NeuroTalk interface was designed

that  converts  USB data  received,  into  NeuroTalk  compatible  instruction  stream.  This

instruction stream is then sent to a NeuroTalk compatible block chip for processing and

execution. A description of the NeuroTalk interface is described and a timing diagram is

shown in figure 5.6.
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Figure 5.6. NeuroTalk Bus Timing.

The NeuroTalk interface consists of three signals, Dclk, Tag and the Data signal. The

Dclk is the data clock using which the data is shifted into the block chip. The Tag signal

is used as a reset signal. In the above timing diagram, we can see that the tag signal is

initially high. The next rising edge of Dclk, after the Tag goes low, clocks in the first data

bit on the 1-bit Data signal. All subsequent Data bits are read in by the block chip, as they

are transmitted from the USB-NeuroTalk interface. When the Tag signal goes high, the

shift register in the block chip is reset. Hence, Tag can be used to cancel the execution of

a particular instruction stream, once it has been loaded into the shift register.

The NeuroTalk specification calls for variable length instruction commands. Doing so

provides for multiple  instructions and maximizes functionality  of the block chip.  The

older version of the block chip accepted only fixed-length 16-bit long instructions. Each

instruction is addressed to a single electrode channel. Having more than one instruction

can  add  different  and  advantageous  functionality  to  the  block  chip.  For  instance,  in

addition  to  the  stimulation  instruction  of  the  old  block  chip,  one  instruction  can  be

designed to send the same waveform parameters to more than one channel. If we consider

the  example  of  visual  prosthesis,  another  kind  of  block  chip  architecture  can  be

considered.  Biological  vision  is  very  similar  to  computer  vision;  both  cases  include

frames of external objects. For artificial vision, a similar two-dimensional frame buffer

can be implemented in hardware. This buffer can be designed to hold a certain number of

instructions.  Different  instructions  can  then  be  implemented  to  update  and  flush  the

buffer, start or stop the stimulation. A number of variations can be implemented for each

of the mentioned instructions. Due to the variations and different kinds of instructions, a

large storage space is needed in the endpoint of the USB core. Using an 8-byte FIFO can
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adequately provide for the instruction storage for the first few versions of the NeuroTalk

block chips.

5.4 USB BANDWIDTH ANALYSIS

To accurately determine the speed with which our stimulator devices can accept data,

a bandwidth analysis needs to be performed. Even though the USB core runs at 48MHz,

it does not provide data at that same rate. To guard against over- and under-flow of data,

appropriate measures must be taken. For this very reason a FIFO is used. This section

discusses the full-speed bulk transaction limits  that every bulk connection adheres to.

Table 5.1 below shows the table 5-9 shown in the USB 2.0 specification document in

section 5.8.4. Note: Each frame in full-speed mode is 1ms long.

Table 5.1. Full-speed Bulk Transaction Limits.

For  a  payload  of  8-bytes,  the  maximum transfers  allowed  are  71.  Thus  the  total

number of bytes that are transferred per frame are 71 x 8 = 568-bytes. 568,000 bytes are

transferred every second (568 x 1,000 = 568,000). If only 2 out of the 8-bytes are used,

about 71 x 2 = 142 useful bytes are transferred per frame (1ms), and 142,000 useful bytes
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2
0
4
9
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are transferred per second. On a per-second timeline, only about (142/568 x 100 = 25%)

25% of the bandwidth is used.

For this research, a FIFO of 8-bytes was used, as described above. The extra 6-bytes

are  used  as  an  extra  buffer  for  the  USB-NeuroTalk  interface  which  has  a  largest

instruction  size  of  26-bits.  The  extra  6-bytes  can  also  be  useful  for  instruction  set

upgrades in future versions of the NeuroTalk interface.

CHAPTER 6

FPGA PROTOTYPE DESIGN

The prototype was initially verified and validated on a custom designed FPGA board.

The FPGA board was designed to accommodate two ALTERA FLEX 10K FPGA chips.

One FPGA was configured with the USB core, after being configured with the required

number and sizes of the endpoints. The ROM, which was also a part of the USB core,

was initialized with the appropriate descriptor values. A USB 1.1 transceiver chip from

Fairchild  Semiconductors  was  used  as  the  bus  front-end.  It  ensured  electrical

compatibility with the USB standard. The FPGA’s were programmed using ALTERA’s

Quartus  II  software.  Programming  circuits  were  designed  for  both  FPGA’s  on  the

prototype boards to facilitate re-programming at any stage in development. The second

FPGA was used to program either the USB-Block chip interface or the USB-NeuroTalk

interface.  This FPGA has two sets  of I/O’s;  one set is responsible for accepting data

packets from the USB core FPGA. The second set of signals is either  block chip,  or

NeuroTalk interface compatible.

FPGA programming  circuits  were  designed  and  added  to  the  prototype  board  to

program the FPGA’s. FPGA’s can be programmed in two different ways. One way is to
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use a programming cable for each re-programming;  the second option is  to  store the

programming  information  in  an  EEPROM.  The  option  of  using  EEPROM  to  store

programming  information  was  not  used  since  developing  the  prototype  required

constantly modifying the design and re-programming the FPGA’s. Hence during initial

development, to simplify the hardware, the cable programming method was employed. A

block diagram of the prototype board is shown in figure 6.1.

Figure 6.1. Prototype Board Block Diagram.

The figure in 6.1 provides an overview of the prototype system developed. A brief

description of each block is provided below.

Power Supply: The power supply was designed to supply power to the USB transceiver;

the two FPGA’s and programming sub-circuits, the crystal circuit, and the Block chip.

The transceiver  and the  FPGA programming  circuits  required  a  power supply  of  3.3
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volts.  This  was  achieved  using  the  LM317  adjustable  voltage  regulator.  The  circuit

diagram and component values are shown in figure 6.2.

Figure 6.2. Adjustable Voltage Regulator.

The equation used to set the output voltage by varying R2 is shown below. Resistor

R1 is set to 240 . The equation for Vo is (Vref is 1.25 Volts):

Vo = Vref (1 + 
1

2

R

R
)

For a Vo of 3.3 volts, R2 = 393.6 Ohms or approximately 400 Ohms. The FPGA’s,

along with an I/O voltage supply of 3.3 V, require a core voltage of 2.5 Volts. To achieve

65

LM317

C
i C

o

R1

R2

V
I

V
O

V
ref



2.5 Volts  the value  of  R2 is  required  to  be 240 Ohms.  The block chip  requires  two

different voltage levels. It requires 5 Volts for Vcc and for VINDIF, and 10 Volts for the

high voltage supply VHV. The VHV was derived using a 10 Volt zener diode and the two 5

Volt supplies were powered by one 7805, 5 Volt regulated power supply.

The crystal oscillator was powered using another 7805-voltage regulator to supply the

required 5 Volts.

48 MHz Crystal Circuit: The clock generation circuit was designed using a 48 MHz

crystal,  a 5K-Ohm resistor and a 10pF and 15pF capacitor.  The clock was generated

using a HEX inverter IC. The circuit is shown in figure 6.3.

Figure 6.3. Clock Generation Circuit.

The circuit designed above, generated a clock of 48MHz that was required by the USB

core to sample and decode the USB signals coming from the PC.

FPGA1  (USB  Core): The  FPGA’s  have  a  total  of  144  pins,  including  power,

configuration and I/O pins. The six front-end pins of the USB core were connected to the

transceiver. These pins conformed to the standard USB transceiver specification. Eight
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data signals, one write enable (Wen) signal and one FIFO full signal were the outputs to

the interface FPGA2. Figure 6.4 shows the various connections.

Figure 6.4. USB Core Input/Output Connections.

FPGA2 (Block chip/NeuroTalk Interface): The Interface FPGA, as shown in figure 6.4

had 10 I/O lines on its front-end and 4 I/O lines on its back-end (Block chip side) as

shown in figure 6.5.

Figure 6.5. Interface Core Input/Output Connections.

FPGA Program Circuit: The FPGA’s were programmed using the ByteBlaster parallel

port download cable as described by the Altera programming data sheet. Table 6.1 shows

the ByteBlaster 25-pin header pin-outs.
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Table 6.1. ByteBlaster 25-Pin Header Pin-Outs.

The 25-pin header plugs into the LPT/Parallel port of the PC. The other end of the

cable has a 10-pin female header, which has pin connections shown in table 6.2. The

programming circuit must provide VCC and GND to the cable at the appropriate pins

shown in table 6.2.

Table 6.2. ByteBlaster Female 10-Pin Header Pin-Outs.

The ByteBlaster schematic diagram is shown in figure 6.6. It shows an octal driver IC

that is required to configure the FPGA’s. The 10-pin female header plugs into the circuit

board and the 25-pin end plugs into the PC and is sent configuration data by the Quartus

II software.
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Figure 6.6. ByteBlaster Download Cable Schematic.

6.1 USB-BLOCK CHIP INTERFACE

The USB-Block chip interface was implemented using Verilog HDL. The interface

has all the signals specified in the block chip specification document. The functioning of
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the block chip interface depends on the DCLK. The interface shifts out the block chip

instruction to the block chip for execution. This requires the interface to output each bit

out of the 2-byte instruction, one at a time. Completely transferring the 16-bits requires

16 DCLK cycles as the DCLK is used by the block chip to read in the data in its shift

register. After successfully shifting out the data, the interface outputs a 200ns long LE

pulse,  200ns after  the shifting out  of the last  bit.  Hence the total  time taken for one

complete transfer to take place is 16 * (1 DCLK cycle time) + 200ns + 200ns. The DCLK

frequency used for the device is about 2.4MHz. Each cycle will thus be 416.6ns long. So,

one  complete  instruction  transfer  will  take  place  in  7.066  s.  Using  this  time

information, a verilog module that counts each DCLK cycle was designed. Depending on

what the state of the interface is, the interface will decide on when an LE pulse needs to

be output. Once the transfer is complete, the time counter resets itself and waits for the

next instruction to be transferred.

Figure 6.7. Block Chip Interface Block Diagram.

Figure 6.7 shows the block diagram for the block chip interface  logic.  The write

enable signal is used as an input to both the FIFO and the interface block. As each byte of

data comes in, it is used by the interface and prepared to be sent to the block chip serially.
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6.2 USB-NEUROTALK INTERFACE

After the successful testing of the USB-Block chip interface, the neurotalk interface

was designed to interface with the USB. Although it had certain similarities  with the

block chip interface,  it  took considerably less time to design due to the fact that  the

interface to the USB core had already been studied extensively while designing the USB-

block chip interface. While the USB-block chip interface took about 16 weeks to design

and implement, it took only about 1 week to design, implement, test and debug the USB-

Neurotalk interface. Out of the 16 weeks for the block chip interface, it took 4 weeks to

design the FPGA development board, and 12 weeks to learn the inner functioning of the

USB core. 

6.3 FPGA DEVELOPMENT BOARD

The FPGA development  board was custom designed without  the use of a printed

circuit board. The general layout of the board is shown in figure 6.1. A photograph of the

board is shown in figure 6.11. The board used two TQFP sockets for the two FPGA’s and

a  QFN  socket  for  the  USB 1.1  transceiver.  Each  of  the  two  FPGA’s  required  two

different power supplies of 2.5 volts and 3.3 volts. The board also has a block chip DIP-

40 socket. 
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Figure 6.8. Photograph of the FPGA Development Board.

6.4 DEVICE DRIVER AND APPLICATION

The Microsoft device driver development kit has sample device drivers available for use.

One  of  these  drivers  was  a  bulk  endpoint  compatible  driver  and  was  used  for  this

research. Along with the driver, a sample application was available that was modified to

send block chip compatible data to the device.
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CHAPTER 7

USB-INTERFACE SYSTEM TESTING

The complete system was tested in three stages. The first stage involved testing the

FPGA development board since it had five different sub-circuits. The power, two FPGA

programming,  clock generation and block chip circuits  were tested and their  nominal

performance verified. The second stage involved testing the USB core and verifying that

it actually functioned as stated by the designer. The third stage involved testing of the

complete  system  including  both  the  interfaces.  Each  of  the  three-stage  testing

methodologies is described in the following sections and test results of each are shown.

7.1 FPGA BOARD DESIGN AND TESTING

The FPGA board was custom designed without the use of manufactured PCB’s. This

method was used for the initial prototype due to the fact that it is very difficult to modify

PCB  traces  in  case  if  even  a  simple  modification  is  required.  Even  though  the

modification is simple, implementing a complex system is tedious work due to the fact

that the FPGA socket and the transceiver socket pins were small. Hence magnet wire was

used  to  make  the  necessary  logic  line  connections  under  a  microscope.  Making  the

necessary connections and verifying them required that the connections be viewed under

the  microscope.  For  the  power  circuits,  a  higher  gauge wire was  used.  Once all  the

power, clock and programming circuits were built, an FPGA was inserted in one of the

sockets  and tested  for  programmability.  Initially  program configuration  failed.  It  was

later discovered that the power pins for each of the four banks of the FPGA need to be

powered for the FPGA to program and function correctly, even if one or more sides are

not used. Once the FPGA was fully powered, the FPGA configured successfully. Once

the general circuit  connections  for one FPGA were verified and validated,  the circuit
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connections  were  replicated  for  the  second  FPGA.  A  photograph  of  the  circuit

connections for the FPGA board is shown in figure 7.1.

Figure 7.1. Photograph of underside of FPGA Prototype Board.

7.2 USB CORE TESTING AND VERIFICATION

The  USB  core  chosen  was  obtained  from  www.opencores.org,  and  since  it  was

obtained in open source form, it lacked detailed documentation.  The top-level verilog

module consists  of endpoint  I/O’s,  pins  for  the USB 1.1 transceiver  and other  status

signals. The transceiver and USB core interface circuit is shown in figure 7.2.
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Figure 7.2. Circuit Diagram of Transceiver and USB Interface.

According to the overall design of the USB core, the 8-bit data bus shown in figure

7.2, the write enable,  wr_en signal, the empty and full signals play a part in the data

transmission. Once the USB receives a data packet from the PC, it is decoded according

to the USB specifications and forwarded to the OUT endpoint FIFO through the 8-bit

data bus. In the USB system, initially, there were two unknowns. It was not known which

driver could be used for the device. The other unknown was whether or not the USB core

functioned  properly  as  it  was  implemented.  To  increase  the  chances  of  the  device

functioning,  one  unknown  had  to  be  removed.  The  obvious  choice  was  the

driver/application to be used. A few USB debug applications were installed to test the

device. It was assumed that these devices had the requisite generic drivers that would

enable the PC to successfully communicate with the USB core, provided the core was

implemented correctly. 

Once a data packet successfully arrives at the core, it is then placed on the data bus 8-

bits at a time. When each byte is valid on the bus, a pulse is sent on the write enable

signal. The byte is then written into the OUT endpoint FIFO. Once the complete packet is

written, or even before it is written, the data can be used by the endpoint function. One

test strategy was to monitor the eight data lines and the write enable lines to ascertain the

arrival of the data packet at the USB core. As stated above, while conducting the test, it

was assumed that the PC was correctly sending the data to the USB device.
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Initially when the device was powered up and connected to the PC, the Windows

operating system did not acknowledge the addition of the device to the USB bus. Tests

were run using a USB configuration snooping software, and it was discovered that the

device was not completing the enumeration process, as it should to be recognized by the

PC. When a device is first connected to a USB port, the PC sends a particular sequence of

commands to the device, and it expects a reply to each of the three commands it sends. If

for any reason this query and reply session fails, the device enumeration fails and the PC

does not recognize the device. This is what the symptoms were in the case of the USB

device. Hence it was hypothesized that the device is not being recognized due to some

failure in the enumeration process. To trace the problem, a logic analyzer was hooked to

certain test points on the FPGA that tracked the requests and replies flowing between the

USB core and the PC. Since the core had two FIFO’s, one each for the PC requests and

the core replies, it was fairly simple to setup the test. The data acquired by the test is

reproduced below in figure 7.3.
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Packet 1 from PC Host

Byte 1: A5: Start of Frame
Byte 2: EC: Frame # +
Byte 3: 9C: CRC5
Byte 4: 2D: Setup
Byte 5: 00      Addr.+Endp.+
Byte 6: 10      CRC5
Byte 7: C3: Data PID

Byte   8: 80: bmRequestType
Byte   9: 06: bRequest
Byte 10: 00: descriptor type
Byte 11: 01: descriptor index
Byte 12: 00: wIndex high
Byte 13: 00: wIndex low
Byte 14: 40: wLength high
Byte 15: 00: wLength low
Byte 16: DD: CRC16
Byte 17: 94:   CRC16



Figure 7.3. Enumeration Failure Test Results.

The test as described above was successful in locating the source of the enumeration

failure. The problem was due to an extra byte that was added on the reply by the USB

device. This extra byte had all bits set to 0, as can be seen in figure 7.3. Although, the

problem was known, locating the source took a considerable amount of time since the

inner  code of the USB core needed to be looked at  and studies,  without  any formal

documentation.  After about 3 weeks of intense search, the source of the problem was

positively identified and eliminated. 

In the initial phase of device development, Altera’s MAXPLUS II software was used.

In the USB core, four FIFO’s were implemented. Two FIFO’s were used for the control

endpoint, one each for IN and OUT endpoints. Another FIFO was used for OUT endpoint

1. The forth FIFO was a smaller FIFO used as a pre-fetch FIFO for enumeration. To

successfully  compile  the USB core in MAXPLUS, certain changes were made to the

FIFO’s. The endpoint FIFO’s were instantiated using library SRAM modules provided by

MAXPLUS. The smaller pre-fetch FIFO, however, was implemented by using the  reg

keyword available in Verilog. MAXPLUS, did not synthesize an SRAM using the  reg

keyword  because  this  feature  was  not  supported  in  that  particular  version.  The
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Reply from Device to PC

Byte 11: 34: 
Byte 12: 12: 
Byte 13: 78: 
Byte 14: 56: Bytes 10 to 18 of
Byte 15: 01: Device descriptor
Byte 16: 00: 
Byte 17: 00: 
Byte 18: 00: 
Byte 19: DE: 
Byte 20: D2: CRC16
Byte 21: 00: CRC16

Byte 1: 4B: Data PID
Byte 2: 00:     Should be 12, byte-3
Byte 3: 12: 
Byte 4: 01: 
Byte 5: 10: Bytes 1 to 9 of
Byte 6: 01: Device descriptor
Byte 7: 00: 
Byte 8: 00: 
Byte 9: 00: 
Byte 10: 40



implementation for the smaller FIFO was then changed to make use of the library SRAM

modules. After the change, the complete USB core successfully compiled without any

syntax errors, and work continued on implementing the USB-block chip interface. During

this  initial  phase,  the PC on which  the  core  development  was being done had to  be

replaced with another. This required installing the software on the new machine. By then

Altera  had  phased  out  the  older  MAXPLUS  software  and  required  developers  to

download  and  install  an  upgraded  version  of  the  software  with  better  features  and

advanced options, called Quartus. Once the installation was done development went on

without incident. The cause of the enumeration failure, it was discovered, was the change

done in the implementation of the smaller pre-fetch FIFO. As designed, the USB core

was supposed to have the FIFO functioning with unregistered outputs. In other words, as

soon as the first byte is stored in the FIFO, it appears on the output pins, i.e. it did not

require a positive edge of the read clock for the data to appear on the output. The default

setting of the library function, however, set the FIFO to function in the registered mode,

i.e., when the first byte is entered into the FIFO, it appears on the output lines only after

the rising edge of the read clock. It was due to this reason, an additional 0-byte was being

appended to the reply to the PC. Setting the FIFO to function with unregistered outputs

then solved the problem. Apart from this there was no other problem with the USB core

as it was implemented.
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7.3 INTERFACE TESTING AND VERIFICATION

The only problem encountered while designing the interface what that of clock jitter.

The DCLK and TCLK used by the block chip were derived from the main 48MHz clock.

The main clock was observed to jitter, when viewed on a logic analyzer. This jitter was

hence also induced in the DCLK and TCLK. The source of the problem on the derived

clocks and a solution is presented below. The problem is shown in figure 7.4.

Figure 7.4. Clock Skew.

To better control and transmit DCLK and TCLK, a faster clock called FCLK was

implemented. The DCLK was initially derived from the 48MHz clock using a counter.

One cycle of the 48MHz clock is 20.83ns long. The block chip specification lists certain

minimum setup time for  the  DIN line.  To comply  with the  requirements  the  DCLK

frequency was chosen to be 2.5MHz, with one cycle 0.4  s long. This means that there

are  
ns

s

83.20

4.0 
 = 19.2 20 main clock cycles in each DCLK cycle. Even though there

are 20 cycles in each DCLK cycle, we only need 10 cycle counts because DCLK is high

or low for only 10 of these cycles, and one period consists of 20 cycles. To count 10 main

clock cycles a 4-bit counter is required. Initially, DCLK is logic low and it remains low

for the first 10 increments of the counter. At the next step, DCLK’s state is changed to

logic high and the counter is reset to 0. The counter again counts to 10 and then DCLK is

set to 0. The source of the problem is shown in figure 7.5.
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Figure 7.5. 48MHz clock with DCLK half-cycle timing.

Due to the jitter, each clock cycle, can be either more or less than 20.83 ns. We can

assume for  simplicity  in  describing  the  problem that  because  of  a  low resolution  of

measurement, each cycle of the main clock can be shorter or longer than 20.82 ns by

about +/- ts.  Hence in figure above, the ten clock cycles on a worse case scenario, can be

0.208322 + (10 * tclk) or 0.208332 – (10 * tclk). This means that DCLK can change state

from either a 0 or a 1, in the range stated above. This high difference in jitter will cause

the DCLK to also jitter at a high rate. To solve the problem a 5MHz FCLK was derived

from the main clock. Each cycle of FCLK will then be 0.2  s long. Each FCLK cycle

will have 
ns

s

83.20

2.0 
 = 9.6 10 main clock cycles. To generate FCLK, a 3-bit counter is

required. For the first 5 counts, FCLK will remain at logic 0; the counter will then be

reset to 0. For the next 5 counts FCLK will be set at logic high. Assuming the same rate

of jitter on each clock cycle, we can calculate the new range the FCLK will jitter in.

According to figure 7.6 the range will be, 0.104166 + (5 * tclk) to 0.104166 – (5 * tclk).

Since the total skew of 5 clock cycles is less than the skew of 10 clock cycles, the jitter of

FCLK is less than that of the main clock cycle. DCLK is derived from FCLK and not the

main clock to further reduce the jitter. Since FCLK is twice as fast as DCLK, there are

two FCLK cycles per DCLK cycle.
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Figure 7.6. 48MHz clock with FCLK half-cycle timing.

The DCLK jitter in the first case is +/- 10* tclk. Using the FCLK to derive the DCLK

reduces this jitter.  FCLK jitters  in the range of +/- 5 * tclk.  Since DCLK is based on

FCLK, its jitter is also reduced to +/- 5 * tclk, in other words, it was reduced by half. When

noticed on a logic analyzer, the jitter on DCLK was not noticeable. 

Figure 7.7. FCLK and DCLK.
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CHAPTER 8

ASIC DESIGN FLOW

After the successful implementation, verification and validation of the interfaces and

the USB core in FPGA, the designs were prepared for fabrication in ASIC. This chapter

describes the process of preparing a proven design for layout. There are three distinct

steps in the process and are described in the following sections. The first step is synthesis

that converts Verilog logic code to a transistor level circuit. The second step converts the

transistor level circuit to a layout while conforming to a particular technology library.

The third step consists of performing design rule- and layout vs. schematic-checks. This

step guarantees  that  the layout generated  is  functionally,  and electrically  equal  to the

transistor level schematic of the design.

8.1 SYSNTHESIS

This step converts the verilog source into its transistor level circuit. The software used

to perform synthesis on the USB and interface cores was a widely used Synopsys design

compiler.  Figure  8.1  shows  the  steps  required  to  convert  a  verilog  project  into  its

equivalent transistor level circuit.

The project information is first entered into the compile.scr file, which is a setup file

for the synopsys design compiler.  The information entered in  the setup file  includes;

verilog design files, top level module, output files, etc. The dc_shell command is invoked

to start the synthesis process on the design files. The screen output is written to a text file

to conveniently analyze the results of the synthesis operation. The output of the synthesis

operation is the creation of the .lsi file.
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Figure 8.1. Synopsys compilation steps.

8.2 LAYOUT

The L-Edit software was used to layout the USB and interface cores. However, before

L-Edit can perform layout, the source file provided to it should be in a proper format.

Hence, the .lsi file obtained in the previous step is converted into the .tpr format to be

readable by L-Edit. This process is depicted in figure 8.2. 

Figure 8.2. LSI to TPR conversion.

Once a tpr file is obtained, L-Edit is commanded to use that file as its input for 

creating the layout of the complete chip. Once the layouts of the three chips was 

obtained, the two interface cores were combined with a USB core, and the transceiver 

core to create the USB-blockchip and USB-Neurotalk chips. These two layouts are 

shown in figure 8.3 and 8.4.
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Figure 8.3. USB-Blockchip Core.
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Figure 8.4. USB-Neurotalk Core.

8.3 DRC & LVS CHECKS

Once the complete cores were done, design rule and layout verses schematic checks

needed  to  be  done  to  ensure  that  the  synthesized  cores  were  translated  into  their

respective  circuit  level  representations  without  any errors.  In  other  words,  the layout

process, and the process of connecting the three layouts, should not induce any errors.

DRC is a function built  into the L-Edit  software and did not report  any errors in the

design rules that were used. The LVS process is a little involved and is shown in figure

85

Pin 1

Neurotalk
Interface

USB Core

USB 1.1 TransceiverTest Pads



8.5. L-Edit is used to extract the transistor level circuit netlist from the layout itself. This

process  creates  an  .spc  file.  In  addition  to  the  two  complete  cores,  the  three  sub-

components  of  each  core  were  also  used  to  generate  separate  spc  files.  The  sub-

component spc files are then used by ORCAD software to create a transistor level circuit.

These circuits are then converted into blocks and connected the same way, as in the final

layout, using ORCAD. Once the transistor level circuit for the USB-blockchip and the

USB-neurotalk interfaces are obtained, each of these is extracted into a top-level netlist

that contains not only the USB circuit, but also the interface and transceiver circuit. Once

the top-level transistor level circuit  netlist  is obtained, it is compared to the transistor

level netlist extracted from the layout, using a L-Edit software utility called LVS. If the

two files match, it means that the interconnection of the three cores, in layout, i.e., USB,

interface and transceiver match perfectly with the ORCAD circuit  level netlist.  Doing

such  a  check  increases  the  confidence  level  in  the  layout  interconnections,  as  the

interconnections  in  ORCAD are  easy  to  do  and the  errors  are  more  easily  detected.

Figures 8.6 and 8.7 show the ORCAD circuits  for the USB-Blockchip and the USB-

Neurotalk chips. These circuits were used to extract a netlist, which was compared with

the layout netlist obtained by directly extracting the combined layout of the cores, shown

in figure 8.3 and 8.4. Figure 8.5 shows the entire LVS process.
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Figure 8.5. LVS Flow Chart.
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Figure 8.6. USB-Blockchip ORCAD Circuit. 
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Figure 8.7. USB-Neurotalk ORCAD Circuit.

The schematics shown in figures 8.6 and 8.7 are too complex to be seen clearly. The

motivation  for  implementing  the  schematics  was  to  ensure  the  correctness  of  the

interconnections when compared with the actual layout. 
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CHAPTER 9

DISCUSSION OF ACHIEVED RESULTS

The USB device was initially tested and validated in FPGA using the board shown in

figure 6.8. A sample device driver and application provided with the Windows Device

Driver Development Kit, were used. The device driver was used without being modified,

however the application required minimal modification to send the correct instruction to

the device. 

9.1 FPGA PROTOTYPE TEST RESULTS

The blockchip  and the neurotalk  implementations  were successfully  tested  on the

FPGA prototype board. Figure 9.1 shows the signals on DCLK, DIN and LE. This figure

closely matches figure 3.3, which shows the output waveform as described in the block

chip specification document. Figure 9.2 shows a partial blockchip output waveform as it

appears on an oscilloscope.  The figure shows the channel output along with the DIN,

DATA and LE signals. Figure 9.3 shows the complete  blockchip output waveform at

channel 1. The data the application sent to the USB was sent in decimal format. The 4-

byte data integer was (41,503)10 = (00 00 A2 1F)16. In binary this number is (0000 0000

0000 0000 1010 0010 0001 1111)2. Since the USB outputs data in a little-endian format.

The data that reaches the endpoint is as follows: 1st byte = 0000 1111, 2nd byte = 1010

0010. Hence the data received by the endpoint in binary is: (0001 1111 1010 0010)2. The

data transmitted translates into the waveform attributes shown in figure 9.1.
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Figure 9.1. Blockchip Instruction Attributes.

Each  pulse  width  increment  starting  with  T3T2T1T0  =  0001  is  in  53.33  us

increments. Since T3T2T1T0 = 1000 the 8th increment after T3T2T1T0 = 0001, the pulse

width is 53.33 us * 8 = 426.64 us. This number can be verified by looking at figure 9.4.

Since the voltage obtained is the open circuit  voltage across the channel, i.e. it  is not

loaded, the signal hits the compliance voltage, hence the amplitude cannot be verified.

However the fact that the pulse width is as expected we can safely assume that the system

is works correctly. The pulse polarity is ‘1’, which means the output waveform will be

anodic first.
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Figure 9.2. Oscilloscope Screenshot of Blockchip Signals.

Figure 9.3. A Partial Oscilloscope Screenshot of Blockchip Channel Output.
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Figure 9.4. A Complete Oscilloscope Screenshot of Blockchip Channel Output.

The neurotalk version of the device was similar to that of the block chip design. The

difference between them lies in the different number and kinds of signals. The neurotalk

interface requires  three signals:  serial  data  output  (ODATA), data  clock (DCLK) and

reset (TAG). Before starting any transmission, a pulse needs to be generated on the TAG

signal to reset the neurotalk target device. The data output available at the first rising

edge of the DCLK, after the TAG goes low, is considered valid. In addition, the most

significant bit of each byte in the instruction is reserved for purposes discussed below.

Figure 9.3 shows the signal lines for the neurotalk version of the device and a close up of

the instruction as it is written to the endpoint FIFO.
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Figure  9.5. Closeup of Neurotalk Output Signals.

The data that is sent to the neurotalk interface is a 4-byte data packet as shown in

figure 9.3. In binary, the data translates to: 1010 1010 0101 0101 0101 0101 0101 0101.

Since the 7th bit of each byte is reserved, it is not counted in the instruction stream. The

instruction stream is: 010 1010 101 0101 101 0101 101 0101. The signal output obtained

from the stream is shown in figure 9.6. Figure 9.7 shows the complete output of the

neurotalk interface state machine. It shows the TAG signal, the data output signal and the

data clock. I can be verified visually that the data output stream of figure 9.7 matches

with that of figure 9.6.
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Figure 9.6. Neurotalk Data Stream.

Figure  9.7. Neurotalk Output Signals.

   A start-of-frame (SOF) signal was also implemented. It is designed to output a short

pulse and is an output from the USB core FPGA. While writing the specification for the

neurotalk  interface  logic,  it  was  discovered  that  there  was  a  need  for  the  neurotalk

compatible external chip to be apprised of a start of data frame. The USB core sets a bus

to endpoint 1 before starting to send data to the endpoint. This bus was used to determine

the exact timing of the SOF signal. It was soon discovered that using the SOF would lead

to another potential problem. This problem surfaces if immediately after the very first

instruction, another instruction is sent, the new instruction does not have a SOF signal
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preceding it. In an ideal condition this would pose no problem. However, if any one byte

were to be missed, due to a missing write enable, the wrong instruction would be read in,

and the state machine will not be synchronous with the USB core. To solve this problem,

the instruction format was redesigned in such a way that the most significant bit of the

first byte will always be a logic ‘1’. All subsequent bytes of that particular instruction

will  have  a  logic  ‘0’  as  the  most  significant  bit.  Such  an  addition  would  make  the

interface synchronous with the USB core at every instruction. Figure 9.8 shows the SOF

signal. The data packet closely follows the SOF pulse as shown.

Figure  9.8. Implementation of the SOF.
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CHAPTER 10

DISCUSSION

The initially  specified  goals  of  the  project  have  been successfully  achieved.  This

chapter discusses the overall project, including the problems that were faced during the

implementation,  and  recommendations  for  future  improvements  in  the  design  and

hardware implementation.

10.1 USB DEVICE IMPLEMENTATION

As stated in chapter 6 and 8 the prototype FPGA device was implemented without

using PCB’s. Figure 7.1 shows the bottom view of the device. It can be easily seen that

the  manual  connections  are  complex  and  hence  prone  to  loose  connections.  Such  a

problem was frequently faced while building and debugging the design. Often, while the

device was working, one of the FPGA’s would lose its configuration and would have to

be programmed again. The other problem that was faced was validating the USB core

that  was  obtained  as  an  open  source  implementation.  Since  it  did  not  have

documentation, it took a considerable amount of time to configure and debug. 

The software used for the device is the application that was supplied by the Windows

Driver Development kit. It is written in C and requires a driver build environment. The

driver  is  a  generic  version  that  is  compatible  with  devices  that  support  only  bulk

transfers. Although the driver works, it  has not been optimized for use with any one

specific device.

10.2 RECOMMENDATIONS

The FPGA development  board  that  was  designed required  extensive  soldering  to

function correctly. Over time due to the use of the device, the solder connections degrade
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and either need to be re-done, or the connecting wires need to be replaced. To avoid such

extensive  maintenance  and replacement,  the device  could  be implemented  as  a  PCB.

Using a PCB however could create other problems. For instance, making a change to a

PCB is more difficult compared to making a change in the manually constructed device.

To overcome such a disadvantage, each major component can be soldered to it own PCB.

The individual components can then be interconnected using connectors and can be made

to connect any pin on one FPGA to any pin on other devices. Such a PCB system is

shown in figure 10.1.

Figure 10.1. Proposed PCB based Development System.

Such  a  system will  make  sure  that  FPGA’s  don’t  lose  configuration  due  to  bad

connections. It will enable quick re-configuration of the pin connections, provided the

correct type of connector is used to connect the two PCB’s.

In  addition  to  the  above-mentioned  changes,  the  device  driver  used  for  the

development board can be optimized more by implementing it at a lower level in the

operating  system stack.  The  application  currently  is  executed  using  a  command  line

console provided along with the windows driver development kit, and can be improved

by adding a graphical user interface for better user interaction and control of the output

waveform attributes.
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10.3 TEST RESULTS

During the implementation  and testing  of  the device  a  number of  problems were

faced. Due to the absence of accompanying documentation for USB core it was time

consuming to get the device to work. In addition,  due to insufficient  FPGA software

support an error was induced in the FIFO implementation of the USB core. This error

caused the enumeration of the device to fail. It was discovered that the FIFO outputs are

required to be unregistered to function as expected. The other problem faced was with the

main 48MHz and the internal clocks. This problem caused the internal logic to sometimes

behave erratically thereby giving an inconsistent output. It was discovered that the main

clock was skewed which also skewed its derivative clocks. Generating reduced frequency

clocks  in  small  steps  solved the  problem.  Instead  of  generating  the  2.4 MHz DCLK

directly from the 48MHz main clk, an intermediate 4.8MHz FCLK was derived and then

the DCLK was derived from the FCLK. This reduced the jitter noticeably and improved

the performance of the interface logic.

Subsequent to solving the problems, the FPGA development board was validated and

verified for the application of interfacing with the blockchip and the proposed neurotalk

chips.  The ASIC implementation  of  the  two interfaces  has  been implemented  and is

currently being tested. In addition to the ASIC version, the FPGA based development

board in itself can be used effectively as a stimulator system after the development of the

device driver and application optimized for this application. 
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CHAPTER 11

CONCLUSION

The USB device was successfully implemented and tested in FPGA in spite of facing

problems. The USB, hence appears to be a good solution for use as a link between the PC

and  the  two  microchips:  Blockchip  and  Neurotalk.  To  be  successfully  used  as  a

neuroprosthetic stimulator system, the complete systems needs to be implemented and

tested in ASIC. In addition, the device driver needs to be optimized and the application

needs to be modified to add a graphical user interface. 

The system was implemented manually using a copper clad perforated board. This

required that the connections be made using wire. Doing so provided the flexibility to

change the connections  as needed, however it  turned out to be tedious to design and

debug. The problem of degrading solder connections was also faced in a later stage of

development.  To  overcome these  problems,  implementation  in  PCB is  suggested  for

future implementation. Each electronic component soldered on a separate PCB gives a

reliable  connection,  while letting the designer to be flexible  enough to make changes
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easily and reliably. The system has been implemented in ASIC and is currently being

tested. 

 

APPENDIX A

BLOCKCHIP INTERFACE VERILOG RTL CODE
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`include "usb1_tech.v"
module usb1_interface(clk, //input

 usb_rst, //input
 clr, //input
 man_rst, //input
 ep1_funct_din, // input
 ep1_funct_re, // output
 ep1_we,
 ep1_funct_full,//input
 ep1_funct_empty,//input
 Dclk, //output
 Tclk, //output
 Fclk, //output
 LE0, //output
 outData, //output
 select,
 dataready,
 Data,
 sof);//output

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//  ENDPOINT  1:  BULK,  OUT

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// This data bus inputs data from the FIFO to the device function.
// It is then used by the function. This is used by endpoint 1
input [7:0] ep1_funct_din;
wire [7:0] ep1_funct_din;
// This is the read enable signal the goes into the FIFO.
output ep1_funct_re;
wire ep1_funct_re;
// This input comes in from the FIFO, it tells the device
// whether or not the FIFO is empty.
input ep1_funct_empty;
wire ep1_funct_empty;
input ep1_funct_full;
wire ep1_funct_full;
output LE0;
output Dclk;
output Tclk;
output Fclk;
wire LE0, Dclk, Tclk, Fclk;
output [15:0] Data;
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wire [15:0] Data;
output dataready;
output select;

output outData;
wire outData;

input ep1_we;
wire ep1_we;

input clk, usb_rst, clr;// usb_rst coming from the USB core
wire clk, usb_rst, clr;

input man_rst; // man_rst coming from outside the FPGA

input sof;
wire sof;

reg [7:0] reg5;
//reg re;
reg LE0;
reg select;
//reg ff_enable;
reg enable_le;
reg shift;
reg sft_count;

reg ep1_funct_re;
//wire ep1_funct_re;

reg sr_dataready;

reg dataready;

reg [15:0] Data;
reg [15:0] bitfield;

reg [3:0] count1;
reg [3:0] count2;
reg [3:0] count3;

reg [8:0] shift_count;
reg Dclk, Tclk, Fclk;
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//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// CLOCKS required by the block chips.
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

// Dclk at 2.5MHz = 
always @(negedge Fclk)
begin

if(!usb_rst) begin
Dclk <=1'b0;
count1 <= 4'd0;

end
else if (!man_rst) begin

Dclk <= 1'b0;
count1 <= 4'd0;

end
else if(count1 == 4'd1 && Dclk == 1'b0 && usb_rst == 1'b1 && man_rst ==

1'b1) begin
Dclk <= 1'b1;
count1 <= 4'd1;

end
else if(count1 == 4'd1 && Dclk == 1'b1 && usb_rst == 1'b1 && man_rst ==

1'b1) begin
Dclk <= 1'b0;
count1 <= 4'd1;

end else count1 <= count1 + 4'd1;
end

// Fclk = 5MHz
always @(posedge clk)
begin

if(!usb_rst) begin
Fclk <= 1'b0;
count3 <= 4'd0;

end
else if(!man_rst) begin

Fclk <= 1'b0;
count3 <= 4'd0;

end
else if(count3 == 5 && Fclk == 1'b0 && usb_rst == 1'b1 && man_rst == 1'b1)

begin
Fclk <= 1'b1;
count3 <= 4'd1;

end
else if(count3 == 5 && Fclk == 1'b1 && usb_rst == 1'b1 && man_rst == 1'b1)

begin
Fclk <= 1'b0;
count3 <= 4'd1;

end
else count3 <= count3 + 4'd1;

end
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// Tclk at 312500Hz
always @(posedge Dclk)
begin

if(!usb_rst) begin
Tclk <= 1'b0;
count2 <= 4'd0;

end
else if(!man_rst) begin

Tclk <= 1'b0;
count2 <= 4'd0;

end
else if(count2 == 4'd4 && Tclk == 1'b0 && usb_rst == 1'b1 && man_rst ==

1'b1) begin
Tclk <= 1'b1;
count2 <= 4'd1;

end
else if(count2 == 4'd4 && Tclk == 1'b1 && usb_rst == 1'b1 && man_rst ==

1'b1) begin
Tclk <= 1'b0;
count2 <= 4'd1;

end else count2 <= count2 + 4'd1;
end
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Read from FIFO
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

reg [7:0] temp;
reg [3:0] count_re;

reg ep1_we1, ep1_we2;

always @(posedge clk)
ep1_we1 <= ep1_we;

always @(posedge clk)
ep1_we2 <= ep1_we1;

///////////////////////////////////////////////
// Start reading from the OUT FIFO
///////////////////////////////////////////////

always @(posedge clk)
begin

if(!usb_rst) begin
count_re <= 4'd0;

end
if(sof) count_re <= 4'd0;

105



if(ep1_we2 & count_re < 4'd8) begin
if(count_re == 4'd0) begin

ep1_funct_re <= 1'b1;
Data[15:8] <= ep1_funct_din;
dataready <= 1'b0;
count_re <= 4'd1;

end
if(count_re == 4'd1) begin

ep1_funct_re <= 1'b1;
Data[7:0] <= ep1_funct_din;
dataready <= 1'b1;
count_re <= 4'd2;

end
if(count_re == 4'd2) begin

ep1_funct_re <= 1'b1;
bitfield[15:8] <= ep1_funct_din;
dataready <= 1'b1;
count_re <= 4'd3;

end
if(count_re == 4'd3) begin

ep1_funct_re <= 1'b1;
bitfield[7:0] <= ep1_funct_din;
dataready <= 1'b1;
count_re <= 4'd4;

end
if(count_re == 4'd4) begin

ep1_funct_re <= 1'b1;
temp <= ep1_funct_din;
dataready <= 1'b1;
count_re <= 4'd5;

end
if(count_re == 4'd5) begin

ep1_funct_re <= 1'b1;
temp <= ep1_funct_din;
dataready <= 1'b1;
count_re <= 4'd6;

end
if(count_re == 4'd6) begin

ep1_funct_re <= 1'b1;
temp <= ep1_funct_din;
dataready <= 1'b1;
count_re <= 4'd7;

end
if(count_re == 4'd7) begin

ep1_funct_re <= 1'b1;
temp <= ep1_funct_din;
dataready <= 1'b0;
count_re <= 4'd0;

end
end
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else if(ep1_we2 == 1'b0) begin
ep1_funct_re <= 1'b0;
if(dataready == 1'b0) dataready <= 1'b0;
else if(dataready == 1'b1) dataready <= 1'b1;

end
end
//

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Shift out data for 16 Dclk cycles
//

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
always @(posedge Fclk) begin

if(!usb_rst) begin
shift_count <= 6'd0;
sr_dataready <= 1'b0;
select <= 1'b1;
sft_count <= 1'b1;
LE0 <= 1'b0;

end
else if(!man_rst) begin

shift_count <= 6'd0;
sr_dataready <= 1'b0;
select <= 1'b1;
sft_count <= 1'b1;
LE0 <= 1'b0;

end

if(sr_dataready == 1'b0)
shift_count <= 6'd0;

if(sr_dataready == 1'b1 & shift_count == 6'd0 & Dclk == 1'b0) begin
shift_count <= 6'd1;
select <= 1'b1;
LE0 <= 1'b0;

end
else if(sr_dataready == 1'b1 & shift_count == 6'd0 & Dclk == 1'b1) begin

shift_count <= 1'b0;
select <= 1'b0;
LE0 <= 1'b0;

end
else if(sr_dataready == 1'b1 & shift_count <6'd38) shift_count <= shift_count +

6'd1;

if (dataready == 1'b1 & shift_count == 6'd0) begin
sr_dataready <= 1'b1;

end
else if (dataready == 1'b0 & shift_count == 6'd36) begin //691

sr_dataready <= 1'b0;
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sft_count <= 1'd0;
select <= 1'b1;

end

if(sr_dataready == 1'b1 & shift_count == 6'd1) begin
select <= 1'b1;
LE0 <= 1'b0;

end

if(sr_dataready == 1'b1 & shift_count == 6'd2 & Dclk == 1'b0) begin
select <= 1'b0;
LE0 <= 1'b0;

end

if(sr_dataready == 1'b1 & shift_count == 6'd3) begin
select <= 1'b0;
LE0 <= 1'b0;

end

if(sr_dataready == 1'b1 & shift_count > 6'd3 & shift_count < 6'd34) begin
select <= 1'b0;
LE0 <= 1'b0;

end

if(sr_dataready == 1'b1 & shift_count == 6'd33 & Dclk == 1'b1) begin
select <= 1'b1;
LE0 <= 1'b1;

end

if(sr_dataready == 1'b1 & shift_count == 6'd34) begin
select <= 1'b1;
LE0 <= 1'b0;

end
end

//
===============================================================
====

// Synthesize in FPGA
//

===============================================================
====

`ifdef FPGA
lpm_shiftreg shft_reg(.data(Data),

 .clock(!Dclk),
 .enable(enable),
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 .load(select),
 .shiftout(outData));

defparam shft_reg.lpm_width = 16;
//

===============================================================
====

//
===============================================================
====

// Synthesize in ASIC
//

===============================================================
====

`else `ifdef ASIC

mux21 mux0(.in1(Data[0]), .in0(1'b0), .sel(select), .out(dff_0_i));
dff_i df0(.data(dff_0_i), .q(dff_0_o), .clock(!Dclk), .enable(1'b1));

mux21 mux1(.in1(Data[1]), .in0(dff_0_o ), .sel(select), .out(dff_1_i));
dff_i df1(.data(dff_1_i), .q(dff_1_o), .clock(!Dclk), .enable(1'b1));

mux21 mux2(.in1(Data[2]), .in0(dff_1_o), .sel(select), .out(dff_2_i));
dff_i df2(.data(dff_2_i), .q(dff_2_o), .clock(!Dclk), .enable(1'b1));

mux21 mux3(.in1(Data[3]), .in0(dff_2_o), .sel(select), .out(dff_3_i));
dff_i df3(.data(dff_3_i), .q(dff_3_o), .clock(!Dclk), .enable(1'b1));

mux21 mux4(.in1(Data[4]), .in0(dff_3_o), .sel(select), .out(dff_4_i));
dff_i df4(.data(dff_4_i), .q(dff_4_o), .clock(!Dclk), .enable(1'b1));

mux21 mux5(.in1(Data[5]), .in0(dff_4_o), .sel(select), .out(dff_5_i));
dff_i df5(.data(dff_5_i), .q(dff_5_o), .clock(!Dclk), .enable(1'b1));

mux21 mux6(.in1(Data[6]), .in0(dff_5_o), .sel(select), .out(dff_6_i));
dff_i df6(.data(dff_6_i), .q(dff_6_o), .clock(!Dclk), .enable(1'b1));

mux21 mux7(.in1(Data[7]), .in0(dff_6_o), .sel(select), .out(dff_7_i));
dff_i df7(.data(dff_7_i), .q(dff_7_o), .clock(!Dclk), .enable(1'b1));

mux21 mux8(.in1(Data[8]), .in0(dff_7_o), .sel(select), .out(dff_8_i));
dff_i df8(.data(dff_8_i), .q(dff_8_o), .clock(!Dclk), .enable(1'b1));

mux21 mux9(.in1(Data[9]), .in0(dff_8_o), .sel(select), .out(dff_9_i));
dff_i df9(.data(dff_9_i), .q(dff_9_o), .clock(!Dclk), .enable(1'b1));

mux21 mux10(.in1(Data[10]), .in0(dff_9_o), .sel(select), .out(dff_10_i));
dff_i df10(.data(dff_10_i), .q(dff_10_o), .clock(!Dclk), .enable(1'b1));

mux21 mux11(.in1(Data[11]), .in0(dff_10_o), .sel(select), .out(dff_11_i));
dff_i df11(.data(dff_11_i), .q(dff_11_o), .clock(!Dclk), .enable(1'b1));
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mux21 mux12(.in1(Data[12]), .in0(dff_11_o), .sel(select), .out(dff_12_i));
dff_i df12(.data(dff_12_i), .q(dff_12_o), .clock(!Dclk), .enable(1'b1));

mux21 mux13(.in1(Data[13]), .in0(dff_12_o), .sel(select), .out(dff_13_i));
dff_i df13(.data(dff_13_i), .q(dff_13_o), .clock(!Dclk), .enable(1'b1));

mux21 mux14(.in1(Data[14]), .in0(dff_13_o), .sel(select), .out(dff_14_i));
dff_i df14(.data(dff_14_i), .q(dff_14_o), .clock(!Dclk), .enable(1'b1));

mux21 mux15(.in1(Data[15]), .in0(dff_14_o), .sel(select), .out(dff_15_i));
dff_i df15(.data(dff_15_i), .q(outData), .clock(!Dclk), .enable(1'b1));

`endif // ASIC
`endif // FPGA
//

===============================================================
====

endmodule
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