
CUSTOM USB INTERFACE FOR NEUROPROSTHESIS

BY

RAHUL KUMAR

ELECTRICAL AND COMPUTER ENGINEERING

Submitted in partial fulfillment of the
requirements for the degree of

Master of Science in Computer Engineering
in Electrical and Computer Engineering

in the Graduate College of the
Illinois Institute of Technology

Approved _________________________
Adviser

Chicago, Illinois
December 2004

ACKNOWLEDGEMENT

I would like to take this opportunity to thank all those without whom this thesis

would not have been possible. I would like to thank Dr. Stine for his excellent teaching

that gave me a good grounding in Verilog RTL and digital systems design. I would like

to thank Dr. Troyk for encouraging and instilling scientific thought, giving me his

suggestions on how to implement a reliable and robust design, and performing numerous

thesis reviews.

I would also like to thank Cathie for helping me with all the purchase orders, David

and Nishant, who shared numerous design and implementation ideas with me. I would

like to thank Keyur for suggestions regarding device driver and application development

and Swapna for fixing my computer and printing problems.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGEMENT ... iii

LIST OF TABLES ... vi

LIST OF FIGURES ... vii

LIST OF SYMBOLS ... ix

ABSTRACT ... x

CHAPTER

1. INTRODUCTION .. 1

1.1 Neuroprosthetic System Functionality 2
1.2 PC Communication Links... 5

2. REVIEW OF PREVALENT COMMUNICATION TECHNIQUES … 9

2.1 Overview of Hardware Architectures 9
2.2 Analysis of Hardware Architectures... 29

3. MOTIVATION FOR PRESENT WORK.. 31

3.1 Visual Prosthesis Stimulator System.. 33
3.2 Alternative Communication Links.. 41
3.3 Advantages of the USB... 42

4. THE UNIVERSAL SERIAL BUS ... 44

4.1 USB Architecture Overview... 44
4.2 USB Transfer Types... 48
4.3 USB Enumeration .. 52
4.4 USB Descriptor Types ... 54

5. USB STIMULATOR DEVICE... 62

5.1 The USB Core .. 63
5.2 USB -Block chip Interface.. 66
5.3 USB -Neurotalk Interface .. 68
5.4 USB -Bandwidth Analysis ... 68

6. FPGA PROTOTYPE DESIGN.. 72

6.1 USB-Blockchip Interface ... 79
6.2 USB-Neurotalk Interface.. 80
6.3 FPGA Development Board .. 80

iv

6.4 Device Driver and Application .. 81

7. USB INTERFACE SYSTEM TESTING.. 82

7.1 FPGA Board Design and Testing .. 82
7.2 USB Core Testing and Verification.. 83
7.3 Interface Testing and Verification ... 87

8. ASIC DESIGN FLOW... 92

8.1 Synthesis .. 92
8.2 Layout... 93
8.3 DRC and LVS Checks ... 95

9. DISCUSSION OF ACHIEVED RESULTS……………………………. 100

 9.1 FPGA Prototype Test Results………………………………….. 100

10. DISCUSSION…………………………………………………………... 107

10.1 USB Device Implementation…………………………………… 107
10.2 Recommendations………………………………………………. 108
10.3 Test Results……………………………………………………... 109

11. CONCLUSION…………………………………………………………. 111

APPENDIX

A. BLOCKCHIP INTERFACE VERILOG RTL CODE 112

BIBLIOGRAPHY .. 122

v

LIST OF TABLES

Table Page

1.1 Summary of Various Communication Links.. 8

4.1 Device Descriptor... 55

4.2 Configuration Descriptor.. 57

4.3 Interface Descriptor... 58

4.4 Endpoint Descriptor.. 60

5.1 Full-Speed Bulk Transaction Limits... 71

6.1 ByteBlaster 25-Pin Header Pinouts... 77

6.2 ByteBlaster Female 10-Pin Header Pinouts.. 77

vi

LIST OF FIGURES

Figure Page

1.1 A Neuroprosthetic system with most Functionality Implanted....................... 3

3.1 VP Prototype Block Diagram for a 64-Electrode Sub-Module....................... 31

3.2 Block Chip Architecture.. 35

3.3 Block Chip Timing Diagram... 37

3.4 Top Level Stimulator Architecture.. 38

3.5 Stimulator Bus-Block Chip Interface.. 39

4.1 USB Topology... 45

4.2 USB Cable... 46

5.1 The USB Core Functional Blocks... 63

5.2 Endpoint Data Transfer Timing Diagram.. 64

5.3 Timing Diagram for 8-Byte Data Packet... 65

5.4 Logic Analyzer Waveform.. 65

5.5 Interface Data Format.. 67

5.6 Neurotalk Bus Timing... 69

6.1 Prototype Board Block Diagram... 73

6.2 Adjustable Voltage Regulator.. 74

6.3 Clock Generation Circuit... 75

6.4 USB Core Input/Output Connections.. 76

6.5 Interface Core Input/Output Connections.. 76

6.6 ByteBlaster Download Cable Schematic... 78

6.7 Block Chip Interface Block Diagram.. 79

6.8 Photograph of FPGA Development Board.. 81

7.1 Photograph of the Underside of FPGA Prototype Board................................ 83

7.2 Circuit Diagram of Transceiver and USB Interface.. 84

vii

7.3 Enumeration Failure Test Results.. 86

7.4 Clock Skew.. 88

7.5 48-MHz Clock with DCLK half-cycle timing... 89

7.6 48-MHz Clock with FCLK half-cycle timing... 90

7.7 FCLK and DCLK Timing.. 91

8.1 Synopsys Compilation Steps... 93

8.2 LSI to TPR Conversion... 93

8.3 USB-Blockchip Core... 94

8.4 USB-Neurotalk Core... 95

8.5 LVS Flowchart.. 97

8.6 USB-Block Chip ORCAD Circuit... 98

8.7 USB-Neurotalk ORCAD Circuit... 99

9.1 Blockchip Instruction Attributes.. 101

9.2 Oscilloscope Screenshop of Blockchip Signals... 102

9.3 A partial Oscilloscope Screenshot of Blockchip Channle Output................... 102

9.4 A complete Oscilloscope Screenshot of Blockchip Channel Output.............. 103

9.5 Closeup of Neurotalk Output Signals.. 104

9.6 Neurotalk Data Stream.. 105

9.7 Neurotalk Output Signals.. 105

9.8 Implementation of the SOF... 106

10.1 Proposed PCB based Development System.. 108

viii

ABSTRACT

Neuroprosthetic research is nearing a point where it requires high-speed link to the

PC, owing to the higher number of electrodes being used. This research aims to verify

and validate the use of the USB, which is a widely available, high bandwidth PC

communication link. The USB provides flexibility in the different kinds of devices and

transfer types it supports. The USB protocol, along with the potential application types

are also described and discussed. An open source implementation of the USB IP core is

tested and customized for interface with two neuroprosthetic stimulator chips developed

at the Pritzker Institute of Bio-Medical Science and Engineering. Bandwidth analysis for

the application interfaces was done considering the bus timing limitations of the USB.

The difficulties faced while verifying the USB core, while implementing the hardware

development board, and while designing the interfaces are also discussed. The

development board was developed by hand and not as a PCB, as it gave complete

flexibility in implementing modifications. The problems encountered were resolved and

the USB core and two chip interfaces were successfully tested and validated using

FPGAs. The two different cores have been fabricated in ASIC.

ix

CHAPTER 1

INTRODUCTION

The Bio-Medical engineering field in recent years has enjoyed considerable success

with the use of the pacemaker for patients who have irregular heart rhythms and cochlear

implants that assist patients with hearing loss. Extensive research is currently being

conducted in the field of neuroprostheses, where the goals of the research vary from

brain-machine interface to stimulation of paralyzed muscle. Regardless of the application,

often the success of any implantable device depends on its functionality, the amount of

power it requires to function and the physical size of the device.

Power for an implanted neuroprosthesis device is typically provided over an inductive

transcutaneous link using a radio-frequency (RF) carrier, and that same link is often used

for data transmission to and from the implanted device. Using a separate communication

link for the implant is less common since the RF power link can be easily used as a

communication link, and setting up a separate link would require another inductive coil

pair operating at another frequency, and may consume valuable chip area and additional

power. To justify implantation, a device should also have sufficiently high enough

functionality. Most systems that are in the research stage are not fully implanted since

their functionality has been insufficiently researched or validated. Portions of the system

are left external so that their requirements can be refined in preparation for the design of a

fully implantable device. For modern neuroprotheses designs, as the functional

complexity, and number of communication channels are increased, so must be increased

the speed of communication to and from the implantable device. To select a reliable,

robust communication link that allows for high-speed computational control of the

implant, the use of personal computers must be considered. Only proven communication

links are widely available in the form of computer peripheral buses. Other commercially

available communication systems are more specialized and are not as common as the

1

peripheral buses. Adapting custom bio-medical devices to these buses is advantageous, in

terms of available support and availability on PC’s. Earlier research projects on such

devices had extensively used advances in computer technology. For instance, many

research projects used the serial port for data transfer, while some others had a

specialized hardware interface to the internal PC bus. Understandably system

development for devices using the serial port is relatively simple then for as compared to

specialized internal buss hardware devices. The specialized hardware devices, on the

other hand have better performance than the serial port, due to their direct access to the

high-speed PC data buss. For emerging neuroprosthesis research, there is a need for a

communication link, that is easy to implement and has higher performance than the serial

and parallel ports. This research establishes the feasibility of using the USB as a

communication link for a visual cortical stimulator that has been developed at the

Pritzker Institute of Bio-Medical Science and Engineering. Two prototype devices are

designed, implemented and tested. Each device is tested in FPGA and ASIC form.

1.1 NEUROPROSTHETIC SYSTEM FUNCTIONALITY

A neuroprosthetic system can be considered as a combination of devices that provide

electrical stimulation to neurons as compensation for functional deficit or disease. An

implantable neuroprosthetic system generally consists of three components; the external

component, called the external control unit (ECU), the implanted electronic circuitry

(IEC), and the stimulating or recording electrodes. The ECU consists of a PC that

interfaces with custom or off-the-shelf hardware and a communication link mechanism,

to send digital data/instructions to the hardware. For a stimulating neuroprosthesis, the

IEC hardware then converts the digital instructions into analog waveforms for driving the

2

electrodes. These waveforms then stimulate the neurons via charge injection through the

implanted electrodes. Such a system is pictorially depicted in Figure 1.1.

Figure 1.1. A Neuroprosthetic System with most Functionality Implanted.

Figure 1.1 shows that most of the hardware functionality is implanted. This requires

that the IEC hardware be flexible to the kinds of instructions it can accept, thus

demanding a complex data structure so that a variety of commands can be accommodated

Having this high level of flexibility is a major requirement due to the fact that changing

the functionality, or replacing a unit with a new one requires the risk of surgery, which

should be avoided.

Addressing and instructing a large number of electrodes requires a higher speed and

bandwidth than provided by the widely used PC based RS-232 or printer parallel buses.

Used in this study, the cortical stimulator, for a visual prosthesis, is capable of

stimulating, in its current form, 256 electrodes. It is expected that 4 stimulators would be

implanted and combined for a 1,024-channel system. The increase in the number of

addressable channels, over simpler devices like a cochlear implant (8-22 channels) has

lead to an increase in the demand for bandwidth between the PC and the implanted

3

Implant

WaveformsInstructions

Electrodes

Skin Boundary

 IEC

Communication Link

ImplantECU

devices. To update 1024 instructions, one for each electrode, in a reasonable small

amount of time requires an unusually wide bandwidth for the command link. An estimate

of the required bandwidth can be obtained as follows. Each instruction in the present

form requires 2-bytes of storage. So, 1,024 instructions will require a storage and transfer

of 2,048 bytes. The transfer rate of these bytes will depend on the refresh rate that is the

average in visual applications. A conservative refresh rate of once every 10ms can be

used. Thus the transfer rate in this case would be, 2,048 bytes/ 10ms. This number can be

reduced to 204,800 bytes/s or 204Kb/s, at the absolute minimum. This figure only

includes updating the frame buffer. It does not include the instruction that will command

the device to use the buffer. A variety of different commands can be implemented, for

instance some instructions can start, stop the stimulation, give a range of electrodes to

stimulate, etc. In addition to the above speed requirement, a communication link must

provide for a conservative amount of excess bandwidth that will take care of

communication bottlenecks that are not quite obvious at the start of any research project.

The various available communication links are discussed in section 1.2. It has been

determined through detailed analysis that in the visual prosthesis project the link operate

at 1.2Mbps.

1.2 PC COMMUNICATION LINKS

The available literature on the subject reports a variety of implantable neuroprosthesis

systems and communication strategies. Reviewing the research conducted over a 16 year

period shows that these techniques are necessarily technology dependent. A more

detailed comparative analysis of these research projects is done in Chapter 2. An

overview of each technique is given below.

4

Embedded System: An embedded system is a combination of computer

hardware and software, and perhaps additional mechanical or other parts, designed to

perform a dedicated function. The hardware usually comprises of a microprocessor,

random access memory (RAM), read only memory (ROM), digital-to-analog converter

(DAC) and analog-to-digital converters (ADC). The ROM is used to store program

instructions, which direct the embedded system to perform intended functions. Since

most embedded system software is developed on IBM-PC’s and Sun Microsystems

workstations, the parallel port or the serial port is used to download the program

instruction object code into the ROM. The RAM is used to store run-time data generated

during the functioning of the system. The DAC is usually used to convert digital signals

into analog form. These converters are usually used in systems where digital data is

converted into analog form, for instance in digital cell phones and television sets. The

ADC can be used with additional circuitry to accept interrupts and process them. The

data transfer speeds of an embedded system vary depending on the processor speed and

the data bus width that the system supports. Most embedded systems have a maximum

clock speed of 5-10 MHz and a data bus width of 8-16 bits. The ideal maximum data

transfer speed in such systems is about 20 Mbps.

RS-232 Serial Port: The serial port is a standard port available on every IBM-

PC. It can be accessed using C / C++ libraries and is a low cost, low performance

communication solution. The serial port can support a maximum of about 120 Kbps.

LPT Port: The parallel port (LPT) enables data transmission in parallel bytes,

instead of serial bit stream like the RS-232 port. It can also be accessed using C / C++

libraries. The speed of the parallel port is up to 200 Kbps.

5

PC bus (Custom Hardware): Custom designed hardware can be directly

interfaced with the PC bus. This requires the custom hardware to be electrically and

functionally compatible with the PC bus. A designer has to make sure that the timings of

all the signals are within a safe error margin mentioned in the particular bus specification.

PC bus (Commercial Hardware): Commercial hardware can be directly used

with the PC bus, without knowing how the bus works, electrically or functionally.

Operating system software and drivers are provided along with the hardware card.

Programming can be done using standard programming languages such as C/C++ or

using Labview or Matlab. The data transfer speed of the PC bus is about 40Mbps.

PC bus (Hybrid Hardware): The PC bus can be used as a combination of

custom and commercial hardware cards. For the custom hardware, all electrical and

functional and timing requirements must be met as discussed above.

USB (Commercial Hardware): Using the USB to exchange information

between PC and hardware is relatively new. This architecture uses commercial USB

compatible hardware to connect to the PC. Along with the hardware, operating system

drivers are also provided. The maximum data transfer speed of such systems can be 480

Mbps.

Table 1.1 shows a comparison between all the communication links described above.

For the cortical stimulator system under consideration, the only communication links that

give us the required bandwidth are the PCI bus specialized hardware, the USB and

firewire. Out of these the PCI bus based specialized hardware is rejected as it is not

available with every PC and requires the use of a special card inserted into the PC.

Firewire and USB are both new communication links aimed at high bandwidth transfers.

6

This research used USB 1.1 instead of 2.0 and firewire due to the easy availability of a

USB 1.1 core and better support with respect to the hardware IP core and the device and

application software.

Table 1.1. Summary of Various Communication Links.

7

8

Communication
Links

Transfer Speed Positive
Attributes

Negative
Attributes

Embedded
Systems

20Mb/s 1) Developer
has control over
every aspect of
implementation.

1) Complex to
implement.

Serial Port 120Kb/s 1) Can have
long cables, and
requires only a
few data lines.

1) Slow

Parallel
Port

200Kb/s 1) Easier to
implement,
compared to
serial port.

1) Uses large
number of data
lines.

PCI Bus
(Specialized
Hardware)

40Mb/s 1) High
functionality,
speed.
2)Good
development
support.

1) Too
specialized, not
available with
all PC’s

USB 1.1/2.0 12Mb/s (1.1)
480Mb/s (2.0)

1) High speed.
2) Good
development
support.
3) IP Cores
available.

1) High initial
learning curve.
2) Involved
device driver
development.

Firewire 400Mb/s 1) High speed.
2) Good
development
support.

1) Lack of
freely available
cores.
2) Initially
developed for
high speed
video and
audio
applications.

CHAPTER 2

REVIEW OF PREVELANT COMMUNICATION LINKS

The previous chapter introduced various different architectures that have been used in

the past and ones that are currently prevalent. A description of each research project and

how different hardware architectures have been used in the past is included in this

chapter.

2.1 OVERVIEW OF VARIOUS HARDWARE ARCHITECTURES

I. Embedded Systems.

1. A computer controlled vest for cardiopulmonary resuscitation

(CPR) [2]. Objective: The objective of this research was to design and

implement an embedded controller for vest Cardiopulmonary Resuscitation

(CPR).

Hardware: The hardware consists of three different modules. The first one is

the PC that is used to download program code to the second module. The

second module is an embedded computer. It consists of an Intel 8088

microprocessor, ROM (to store the execution program), RAM (to store

temporary data generated during runtime), a universal transmitter/receiver to

enable RS-232 communication between the PC and the embedded computer, a

timer for interrupt generation, an A/D converter and I/O ports. The third

module is the power stage circuit that interfaces with the I/O ports. This stage

drives the valves that control the flow of air in and out of the CPR vest.

Software: Two different programs are used in this system. One collects and

stores the data and the other one analyzes the data and prepares it for use. The

9

first program collects data from the user. This data directs the timing and

durations of the valve opening and closing. Once the user enters this data, it is

sorted chronologically. This information is stored as a file in the PC and is

also sent to the embedded computer by the second program. The embedded

computer then controls the CPR vest as directed by the user input.

2. A portable neuromuscular stimulation system for use in paralyzed

upper extremities [4]. Objective: This research aims to design a portable

system for neuromuscular stimulation of paralyzed arms.

Hardware: The hardware for this system was located in three separate PCB’s.

These were for the processor, signal conditioning and stimulation output

respectively. The CPU used was a Motorola CMOS MC146805E2

microprocessor. An 8-bit programmable timer, 112 bytes of RAM, a 64Kbit

EPROM, eight channels of ADC and DAC were implemented on the same

PCB. The signal conditioning hardware included two channels of gain and

low-pass filtering. The stimulation output circuitry was located on the third

circuit board and consisted of intra-muscular electrodes that are implanted

percutaneously. This system uses input from the user to function. The input

goes to the signal conditioning hardware and then through an ADC to the

microprocessor system, which makes the decision on the stimulation output.

Software: The system software was developed on a DEC minicomputer

system and was written in assembly language. A cross assembler generates the

object code for the microprocessor. A PROM programmer is then used to

enter the object program into the EPROM.

10

3. System architecture for a digital signal processor based microcomputer

for use in a multielectrode cochlear implant system [16]. Objective: This

research aimed to implement a multielectrode cochlear implant system.

Hardware: The hardware was based mainly on a Texas Instruments DSP

processor. It has 4K of 16 bit program memory, a commercial codec chip, an

interface chip for the parallel DSP and the serial codec chip, analog

conditioning chips and an RS-232 interface that is used to download program

code into the ROM.

Software: DSP techniques were used to extract features from the speech

signal.

4. A microprocessor-based data-acquisition system for measuring plantar

pressure from ambulatory subjects [25]. Objective: The aim of this research

was to design a microprocessor based data acquisition system for measuring

pressure data from ambulatory subjects.

Hardware: The portable microprocessor based acquisition system consists of

14 polymer pressure sensors, 14 amplifiers, 8-bit ADC a Hitachi

microprocessor, an 8-kbyte CMOS ROM, four-32Kbyte CMOS RAM’s and

interfacing I/O circuits. Data stored in the portable unit are downloaded to an

IBM-PC through the parallel LPT port.

Software: The software download to PROM is not mentioned in the research

paper.

5. A microprocessor-based multi-channel stimulator for skeletal muscle

cardiac assist [6]. Objective: To design a microprocessor based multi-channel

11

stimulator for skeletal muscle cardiac arrest. This is a treatment for chronic

heart failure.

Hardware: The system is built using the Motorola MC68HC811

microcontroller. It is used to send control signals to an analog module to

generate desired pulse sequences. Pulse sequences are defined using software

and are downloaded into the microcontroller using the RS-232 serial port. The

microcontroller has a built in serial port, 256 bytes of RAM, 2K of EEPROM,

an 8 channel ADC and various timers.

Software: The software was designed as an easy to use graphical user

interface. It specifies pulse sequences. These sequences are stored in a file as

events that the microcontroller executes.

6. CMOS Neurostimulation ASIC with 100 channels, Scalable Output,

and Bidirectional Radio-Frequency Telemetry [23]. Objective: This

research designed, implemented and tested a 100 channel Neurostimulation

circuit comprising of a CMOS ASIC chip. A radio-frequency communication

link for power and data was also designed. The ASIC was designed primarily

as a treatment of degenerative disorders of the retina.

Hardware: The overall system comprised of an external image processor, an

external encoder/transmitter, internal receiver/decoder stimulator. An image

captured by a CMOS camera, is processed by the external image processor,

which processes the image into a 10x10 array of pixels. Within the external

encoder/transmitter, each pixel is translated into an encoded RF telemetry

sequence. Upon receiving the RF signal the implanted internal

receiver/decoder stimulator decodes the instruction received and stimulates

the appropriate electrodes.

12

Software: A programmable protocol extracts and pixelizes the acquired image

into a 10x10 pixel array.

7. A Wireless Implantable Multichannel Digital Neural Recording System

for a Micromachined Sieve Electrode [1]. Objective: This research

developed a wireless implantable Multichannel digital neural recording

system for a micromachined sieve electrode.

Hardware: The hardware consists of three modules, a microcontroller with

transmitter electronics, a receiver circuit with instruction decoder and the

electrode module. A Motorola 68HC11 microcontroller was used to generate

serial encoded data to be transmitted over the inductive link. Based on the

channel address and mode of operation different instructions were generated,

transmitted, decoded and executed, thus generating an appropriate waveform

on the electrodes.

Software: The software design for the research was not discussed.

II. RS-232 Serial Port

1. A Programming and Data Retrieval System for an Upper Extremity

FES Neuroprosthesis [10]. Objective: This research aimed to design a

stimulation and data retrieval system for upper extremity stimulation system.

Hardware: The hardware consists of a stimulation unit that has electrodes and

a shoulder position transducer, an electrical isolation pod, an interface module

and an interface module controller box for user input. The PC is used to

download software into the interface module. The RS-232 bus is used to

13

communicate with the interface controller. The PC provides for real-time

software programming and data retrieval from the stimulation system.

Software: The software was developed on the IBM-PC. It provided for real-

time communication with the stimulation system

2. Accuracy of Drug Infusion Pumps Under Computer Control [7].

Objective: This research designed a prototype system to automate drug

infusion. To do this a microcomputer was interfaced to a drug infusion pump,

through a serial communications interface. The flow rate of three

commercially available drug infusion pumps with an internal or add-on serial

communication interface was tested under computer control.

Hardware: The pumps were connected to the PC through the RS-232, to

compare the available infusion pumps in the market.

Software: The software design for the research was not discussed.

3. A Custom-Chip Based Functional Electrical Stimulation System [3].

Objective: This research designed a functional electrical system based on a

custom ASIC chip. Using this system up to 32 chips can be connected serially

to a host computer.

Hardware: In this design, up to 32 chips can be connected to the RS-232 serial

port. Each chip can be addressed individually. Each ASIC chip is able to work

in either master or slave mode. Each system requires one ASIC chip to be in

the master mode with oscillators attached. All the slave chips derive their

clock from the master chip. In this configuration, one address is required for

each individual slave chip. Since each chip can control/address 8 stimulation

14

channels, this configuration results in an address space of 256 independently

controllable stimulus channels per communication link.

Software: The software uses library calls to transmit real-time program

information to the chips

III. LPT Parallel Port

1. A Telemetry System for the Study of Spontaneous Cardiac

Arrhythmias [19]. Objective: This research designed a data acquisition

system to gather data relating to cardiac arrhythmias.

Hardware: The hardware consists of two main components. The implantable

unit and a back pack unit. The implantable unit consists of analog input

electrodes, multiplexers and an ADC. The back pack unit consists of a custom

designed serial card, that converts serial data from the implanted electrodes to

parallel data that can be read by the PC parallel port. The received data is then

processed by a CPU and prepared for transmission via a wireless LAN card.

The data was received from the test subjects directly on the LAN, and thus the

localization of data analysis software was eliminated.

Software: The software was written using a commercially available data

viewing and analysis language PV-Wave. Special routines were implemented

to provide custom viewing functions and to speed input/output and plotting

functions.

15

IV. PC Bus: Custom Hardware

1. A 16-channel 8-Parameter Waveform Electrotractile Stimulation

System [11]. Objective: To study the psycho-physiological performance

associated with various stimulation waveforms by designing a general-

purpose electro-tactile stimulation system.

Hardware: The stimulation system consists of a waveform generator, a PC,

and analog system (ADC and DAC’s), voltage to current converters,

knobs/sensors and electrodes. The knobs/sensor analog data is converted to

digital format using the ADC/DAC’s in the analog module. The PC through

the PC bus reads this digital data. The PC then outputs timer data to the

waveform generation module. Once the waveform generator determines the

wave shape, it is passed on to the voltage-to-current converter and then to the

electrodes.

Software: the PC through the connected bus controls the entire system.

Customized software package translates a user input file containing

commands for all waveform parameters. All software was written in Turbo C

and Turbo assembler for time critical tasks.

2. Computerized Trancutaneous Control of a Multichannel Implantable

Urinary Prosthesis [20]. Objective: This research describes a PC interface of

a multi-channel, implantable, urinary prosthetic device.

Hardware: The hardware for this system consists of six modules. The first

three are an IBM-PC, a microcomputer hardware interface, and an AM

modulator. The second group consists of an AM demodulator, an AC to DC

16

converter and a multi-channel CMOS chip. The outputs of the CMOS chip are

connected to electrodes. The microcomputer hardware interface is used to

convert parallel data from the PC bus to serial data that is used by the AM

modulator for transmission. Once the data is received by the AM

demodulator, it is passed onto a multi-channel CMOS chip, which is basically

a microprocessor that executes 24-bit command words at 300Kbits per

second. In the output stage, the CMOS chip contains control and current

source blocks to interface with the implanted electrodes.

Software: The software designed was a multifunction program that allowed

the user to communicate with the stimulator hardware. All the I/O tasks were

programmed in assembly language. The data analysis and processing tasks

were designed in Pascal. The software was designed to accept commands

from a basic user interface, or from a command file.

V. PC Bus: Commercial Hardware

1. A New Approach to Man Machine Communication for Computerized

Microscopy [13]. Objective: The research aimed to design a new

computerized microscope. This microscope was fitted with objective and

stage encoders and a built in high-resolution computer display to superimpose

dialog, drawing and messages onto the optical microscope image.

Hardware: The hardware consisted of a microscope, a video monitor driven by

a VGA standard graphics display card, encoder card to control the x and y

position of the microscope. These cards communicate with an IBM-PC

through the PC bus.

17

Software: The software is structured as a collection of different modules. One

module is used to mark any object of interest. Another module is used to

calculate the size of a particular object. The software can also display and

store already examined portions of the sample under observation. Another

module can be used to take printouts. The software is also capable of sharing

the data stored on an internal office network.

2. A Computer-Controlled Research Ventilator for small Animals:

Design and Evaluation [22]. Objective: This research aimed to design a

computer-controlled ventilator for small animals.

Hardware: The hardware for the system consisted of an IBM-PC, DAC and

ADC cards installed on the IBM-PC, a linear motor and a linear motor power

amplifier. Three valves were also used to control the airflow into the animal

compartments. These valves were controlled using a DAC. The cylinder

(airflow) and tracheal pressure was measured using a pressure transducer and

converted to digital format using the ADC.

Software: The software design for the research was not discussed.

3. A New Video-Synchronized Multichannel Biomedical Data

Acquisition System [24]. Objective: This research designed a data acquisition

system for bio-medical data. The system was video-synchronized and

simultaneously acquired data with video time codes on a hard drive.

Hardware: The system used a video camera connected to a video tape recorder

(VTR). The VTR was connected to a TV monitor and to an interface board.

Biomedical data is also routed to this interface board. This interface board is

18

connected to an IBM-PC compatible Data input/output card (national

instruments). The system records storage-intensive video images onto a

videotape and simultaneously acquires biomedical data and video time codes

onto a computer hard drive.

Software: LabView graphical programming was used to program the data

acquisition, processing, storage and replay and VTR control.

4. A Multichannel Continuously Selectable Multifrequency Electrical

Impedance Spectroscopy Measurement System [8]. Objective: To design a

multichannel, multifrequency electrical impedance spectroscopy (EIS)

measurement system.

Hardware: The EIS was designed to be modular to enable upgrade and

modification of any component as necessity dictated. The computer used to

control the EIS was a 200 MHz Pentium pro. EIS channel modules were

implemented on custom PCB’s. Each PCB controlled 8 channels.

Communication between the PC and the EIS cards was achieved using a

commercial digital I/O card. A waveform generator was used that was capable

of generating arbitrary functions by direct signal synthesis. Data acquisition

was also performed using a commercial board that had 4 input channels, with

a 200KHz rate and a 16-bit resolution.

Software: The software was written using libraries provided by the

commercial board providers. The hardware interface software for the EIS was

implemented as an ActiveX control in C++. The user interface was designed

and implemented in Visual Basic.

19

5. A Fast digitally Controlled Flow Proportional Gas Injection System for

Studies in Lung Function [12]. Objective: To design a device used for gas

injection in mechanically ventilated patients.

Hardware: The system included a PC, an ADC, a pressure sensor

demodulator, flow sensor and a valve array. The flow sensor detects the

pressure of the gas and the pressure transducer converts this information to an

analog signal. The PC then converts this analog signal into digital format for

use in determining the pressure. The software in the PC then regulates the

valve array to increase/decrease the amount of gas flowing into the flow

sensor, and thereby to the patient.

Software: The software design for the research was not discussed.

6. Computer Controlled Mechanical Stimulation of the Artificially

Ventilated human Respiratory System [15]. Objective: To design a

computer controlled artificial lung to simulate various lung pathologies.

Hardware: The hardware used an existing mechanical simulator including the

necessary sensors, actuators, interface electronics and controllers. The main

compartment is an air compartment with a piston that can be controlled using

an electrical motor. The air compartment was connected to a flow-resistance

compartment. The resistance compartment also has a resistance sleeve to

control the resistance of airflow. The functioning of the system was studied at

different flow resistance settings. The flow resistance sleeve was positioned

using a servo-motor through a ADC. The ADC was also used to input the

various physical parameters of the resistance compartment and converted into

digital format. A motion controller card was then used to run a servo- motor

for the main air compartment.

20

Software: The real-time software was written in MATLAB by communicating

with the interface card using the real-time toolbox available with MATLAB.

7. BCI2000: A general purpose Brain-Computer Interface System [21].

Objective: To design a universal computer-brain interface model to assist

severely motor-handicapped patients.

Hardware: The system model was designed using ADC, which received

amplified and filter brain EEG signals. The computer software then processed

the signals internally. The system model was then implemented using

different hardware components (PC and Data acquisition boards).

Performance was measured using the different hardware components. The

systems were compared for output latency, jitter, clock jitter and processor

load.

Software: The software was implemented in the C++ libraries provided by the

board manufacturer.

8. Development of Brain-Computer Interface: Preliminary Results [18].

Objective: This research aimed to evaluate the feasibility of using EEG

signals for control and communication with a computer, thereby moving

animated objects on the computer screen.

Hardware: The hardware consisted of a PC, EEG amplifiers and a data

acquisition card. The subject is placed in front of the screen, and gel filled

electrodes are placed on specific, predefined locations on the scalp. An EEG is

used for signal amplification and the acquisition card is used for signal

digitization. The computer also has a video card the splits the video output to

two high-resolution monitors.

21

Software: The software design for the research was not discussed.

9. Implementation of a Telemonitoring System for the Control of an

EEG-Based Brain-Computer Interface [17].

Objective: This research presents a remote monitoring system for an EEG

based brain-computer interface.

Hardware: The hardware consists of three major components, the supervisor

system, the patient system, and network system. The brain computer interface

consists of a laptop, a National Instruments data acquisition card, a PCMCIA

card and an EEG amplifier. This system is connected via a network cable and

a network card to a multimedia PC. The monitor system at the supervisor end

serves as a monitoring station for training purposes.

Software: All three systems use the Microsoft Windows operating system.

The brain computer interface (BCI) is programmed using MATLAB and

SIMULINK. Software like PCAnywhere and Netmeeting were used for

training purposes.

VI. PC Bus: Hybrid Hardware

1. A Real-Time Experimental Prototype for Enhancement of Vision

Rehabilitation using Auditory Substitution [5]. Objective: This research

designed a prototype system for the vision rehabilitation using auditory

substitution.

Hardware: The hardware consisted of the following components: a miniature

camera to capture visual stimulus, a video digitizer, 2 sound production

boards (one for experimenter and one for subject, each is connected to a

22

headphone) and video monitors. The image digitizer is connected to the PC

through the bus and is run continuously in frame grabbing mode. The 2 sound

cards were custom designed using off-the-shelf music processors and were

also interfaced with the IBM-PC through the bus.

Software: The software was written in C. The software initialized all the

components of the system and started the frame grabber. The image acquired

by the camera was processed and displayed and then converted into sound

using custom algorithms. The sound amplitude was then transferred to the

sound cards through the PC bus and then output to the headphones.

2.Wireless In-Shoe Force System [14]. Objective: This research presents a

wireless in-shoe force system to acquire, process and transmit foot-floor force

information that has been proven feasible for use with normal and paraplegic

subjects.

Hardware: the system consists of various sub-systems: insole, transmitter,

receiver and PC/Operator interface. The insole measures the actual force

applied between the foot and the floor at four or six key points under the foot.

Force applied to the foot, gets converted into voltage, which is further

processed and used as an input into an analog to digital converter. Digital

voltage readings are then used by a microcontroller to compute the actual

force in pounds. A transmitter system then transmits the data to an external

receiver. The receiver formats the received data into an appropriate data

structure required by an external processing unit. The PC/Operator subsystem

prepares the transmitter for data acquisition by calibrating the force sensors

for a particular person. The subsystem consists of an IBM compatible PC and

a special serial interface. The transmitter is calibrated using a conventional

23

serial interface. The program is downloaded into the transmitter using a serial

connector.

Software: The software design for the research was not discussed.

VII. USB: Commercial Hardware

Brain-Computer Communication and slow cortical Potentials [9].

Objective: To design and implement a brain-computer interface using slow

cortical potentials.

Hardware: The hardware consisted of a PC connected to an EEG machine

through the USB. The system is designed for used in a closed loop. The EEG

acquired brain signals and the computer processed (amplified and filtered)

these signals and accordingly the brain-computer user interface performed

certain functions. The occurrence of certain events then triggered an eye

movement signal that proceeded in the same fashion to the PC and performed

another function and so on.

Software: The software design for the research was not discussed.

2.2 ANALYSIS OF HARDWARE ARCHITECTURES

 We can see a trend in the above overview. The earliest studies were done using the

embedded architecture, and then came the PC Serial and Parallel port. Years later the PC

bus was extensively used as PC became widely used. Since in the early days of the PC,

there were limited hardware options available, and most people chose to design custom

built hardware to interface with the PC bus. Then as more and more commercial vendors

provided various solutions, researchers started using commercial off-the-shelf hardware

and sometimes used a combination of custom and commercial solutions. More recently

24

there has been significant shift in the communication interfaces available in a PC. The

Universal Serial Bus (USB) is a serial port but with significantly higher bandwidth than

the original serial port. Due to the higher performance of USB and the standardization of

the port, many commercial hardware providers are developing USB based hardware that

can be exploited by bio-medical researchers.

This research designed and implemented a custom USB device for use in a research

project that is discussed in chapter 3. It also evaluates the performance of USB as it

relates to the research and to other more general applications. The device implemented to

complete this research can be easily modified to be used as a generic custom-built USB

device.

25

CHAPTER 3

MOTIVATION FOR PRESENT WORK

The custom USB device mentioned in section 2.2 was designed and implemented for

use in the Visual Prosthesis (VP) project currently under research in our laboratory. The

VP project aims to design, fabricate and test a multi-channel transcutaneous, cortical

stimulation system to be used in a prototype of an artificial vision system. A block

diagram of the proposed prototype is shown in figure 3.1. The aim is also to provide a

minimum of 256 implantable cortical electrodes. The figure in 3.1 is a diagram of a sub-

module that addresses and stimulates only 64 electrodes. Four such sub-modules will

increase the number of electrodes to 256.

Figure 3.1 VP Prototype Block Diagram for a 64 electrode Sub-module.

Using a design employing smaller sub-modules has advantages that are beneficial for

the VP project. The power supplies and transmission/receiving circuits of each sub-

26

Block-Chip0

Block-Chip7

Skin Layer

Wireless
Image
Processor/
Transmitter

Digital
Camera

Bridge

Demodulator

Front-End Chip

Controller Chip
Block-Chip
Data Channel

Block-Chip
Data Channel

.

.

.

.

.

.

module are separate, thus if the power regulation in one module fails, it does not fatally

effect the entire implant. Redundancy is also a main feature of the design inside each sub-

module. Each block chip has its own controller data channel, and each channel on each

block chip has its own current driver, thus in the event of a current driver failing, the

other channels of the block chip will still be usable.

The way such a device would work is as follows. The digital camera captures an

image and transfers it to the wireless image processor/transmitter. This module pixelizes

the image and makes a decision as to which particular cortical electrode should be

activated, how much current should be applied and for how long. Instruction for

stimulating single, or groups of electrodes would be sent over the wireless link to the

implanted devices underneath the skin. The bridge circuit of the module then generates

power for system-wide use and accepts reverse telemetry for transmission to an external

module. The demodulator generates the master clock, data clock, timer clock, serial data

stream and other control signals. These signals are then sent to the controller chip and are

shared by all block-chip data channels. The controller chip is a finite state machine

(FSM) that decodes the incoming instructions, issues the instructions to their

corresponding destinations (8-channel block chips). The block chips then execute the

instructions they receive by generating waveforms on one or more electrodes as

specified, to generate a pixelized image for the patient.

To design the prototype system described above, various intermediate systems need

to be devised and tested on real animal/human subjects. One such stimulator system was

designed and extensively tested to acquire data on visual cortex view-field mapping. This

system is described in detail in section 3.1 along with disadvantages when considering

system flexibility.

3.1 VISUAL PROSTHESIS STIMULATOR SYSTEM

27

A benchtop, visual prosthesis stimulator system was designed, as part of an earlier

phase of the visual prosthesis project to have the capability to address and control 128

electrodes. The goal of this phase was to create a benchtop stimulator to evaluate various

stimulation techniques in an animal model, and to evaluate the design from an

implantable system standpoint. The benchtop stimulator provided a basis for the design

of the USB interface that is the subject of this work. This system was comprised of 16

block chips, each having 8 addressable electrode channels. The system was designed to

optically isolate the input signals of the block chip from the computer. On most bio-

medical systems an optically isolated implant is required to protect against unwanted

voltage spikes on the computer power supply, affecting the signals going to the implant.

Since the complete system was powered using a 12-volt lead-acid rechargeable battery, in

addition to using the optoisolators, the implant was completely isolated from any AC

power supply. In this initial benchtop system, a high-performance PC was used in

conjunction with a commercial off-the-shelf digital input/output (DIO) card from Adlink

technologies, as the interface to generate and issue instructions to the stimulator. The

DIO card was programmed to output instructions to the stimulator system, using the

vendor provided C++ and Visual Basic libraries. A graphical user interface was designed

in Visual Basic to simplify the instruction generation process. To understand the

limitations of this stimulator system, a deeper understanding of the system architecture is

required. This includes the DIO card and the block chip architecture. Doing so will

clearly demonstrate the limitations and provide in insight into the various available

solutions to eliminate and effectively deal with those limitations.

I. The NuDAQ PCI-7300 Digital Input/Output Card. The DIO card is a PCI

form factor ultra-high speed card with 32 input/output channels. It performs

high-speed data transfers using bus-mastering DMA via the 32-bit PCI bus

28

architecture. The maximum data transfer rates can be up to 80MB per second.

Extensive software support is also provided with the card. Software drivers for

packages like LabView, HP VEE, DASYLab etc. are provided. Libraries for

Borland and Microsoft C/C++, Visual Basic are also provided for both

Windows and Linux platforms.

II. Block-Chip Architecture. The logic level diagram of block-chip circuitry, as

shown in figure 3.2, has 5 input signal lines, and 4 power lines, 8 stimulation

channels. Each channel consists of a 4-bit timer and 7-bit current output DAC.

The DAC produces the required biphasic pulse and the timer controls the

duration of the pulse. Generating a pulse requires a 16-bit data stream to be

read in to the shift register. The first 3 bits that are read are the channel

address lines, AD2, AD1 and AD0 respectively. These address lines set the

multiplexer to the appropriate channel. The next 7 bits are the amplitude bits

meant for the DAC and are read in as A6, A5, A4, A3, A2, A1 and A0

respectively. The next 4 bits are the timer bits that decide the duration of the

output pulse and are used as inputs for the 4-bit Timers. The last two bits are

the polarity and holdoff bits respectively. The polarity bit decides whether the

output pulse will have the cathodic phase or anodic phase first. The holdoff bit

is used for simultaneous stimulation. If it is set to 0, stimulation will start at

the next rising edge of the TCK, after the rising edge of the LE. If it is set at 1,

stimulation will not begin until the next rising edge of the TCK after SIM is

asserted.

29

Figure 3.2. Block-Chip Architecture.

 1. Signal Description:

a) DIN: This is the serial 16-bit data instruction that is stored in the

shift register.

b) DCLK: This is the clock used to shift the 16-bit data into the

shift register. The frequency of this clock was set to 5MHz.

c) LE: This is the latch enable signal that latches the 13-bit

waveform attribute bits into one of the 13-bit latches shown in

figure 3.2.

d) TCLK: This is the clock used by the 4-bit timers to output

waveforms with the desired pulse width duration.

30

Iout 1

Iout 2

Iout 3

Iout 4

Iout 5

Iout 6

Iout 7
Iout 8

DIN

DCK

 H P T0 T1 T2 T3 A0 A1 A2 A3 A4 A5 A6 AD0 AD1 AD2

SIM
RESB

TCK

CK

HV

LV

GN

D INDIF

4 Bit Timer

4 Bit Timer

4 Bit Timer

4 Bit Timer

4 Bit Timer

4 Bit Timer

4 Bit Timer

4 Bit Timer13 Bit Latch

13 Bit Latch

13 Bit Latch

13 Bit Latch

13 Bit Latch

13 Bit Latch

13 Bit Latch

13 Bit Latch

L
o
g
i
c

TCK

LE

7 Bit DAC

7 Bit DAC

7 Bit DAC

7 Bit DAC

7 Bit DAC

7 Bit DAC

7 Bit DAC

7 Bit DAC

LE

LE

LE

LE

LE

LE

LE

LE

e) RESB: A logic low (0V) on the RESB line resets the 4-bit timers

and the state machine logic circuit, thus terminating all

stimulation pulses currently in progress.

f) SIM: The SIM line is used to generate pulses on multiple

channels simultaneously. The rising edge of the SIM sets a flip-

flop, and on the next rising edge of the TCK, all the channels

with the holdoff bit set will start stimulating simultaneously.

2. Timing Description. Figure 3.3 shows the timing characteristics of the

block chip along with minimum times for certain signal lines. Before a block

chip can start stimulating, it needs to be provided a 16-bit instruction as

described above. When the DIN signal is settled in any one particular state, a

rising edge occurs on the DCLK signal, thus shifting in the state on the DIN

signal into the shift register. This keeps repeating for 15 more DCLK cycles to

shift in all the 16 bits. Once the instruction has been read in, the LE signal is

used to latch the data into the 13-bit latches in the block chip. The remaining

3-bits are used to decide the address of the channel, for which the data is

meant. The LE pulse is supposed to go high at least 200ns after the last data

bit has been read in and it should remain high for at least 100ns. In addition,

the minimum time between the rising edge of the LE and the next rising edge

of the TCLK should be 200ns. If this timing constraint is not met, the

stimulation starts normally at the next rising edge of TCLK.

31

LE

Iout

Pwmim
T

su3

T
su2

T
su1

DIN

AD2 AD1AD0 A6 A5 A4 …. P H

DCLK

TCLK

Figure 3.3. Block-Chip Timing Diagram.

Tsu1 = Minimum time data must be stable before rising edge of DCLK.

Tsu2 = Minimum time between clocking in of last data bit and rising edge of

 LE.

Tsu3 = Minimum time between the rising edge of LE and the rising edge of

TCLK. If this time constraint is not met, stimulation will begin

normally at the next rising edge of the TCLK.

III. DIO card, Block-Chip Interface. The stimulator system was designed to

address and stimulate 128 electrodes. This required using 16 block chips,

since each block chip can address 8 channels. The system diagram of the

complete stimulator system is shown in figure 3.4. Since the DIO card is PCI

based, it conforms to the electrical, functional and timing specifications of the

bus. The PC used had a SCSI bus, as most of the waveform instructions were

stored on the hard drive. To reduce the latency of transferring the instructions

from the drive to the DIO card, the faster SCSI bus was used. The stimulator

bus consisted of the above mentioned block chip signals. Figure 3.5 shows the

stimulator bus in more detail.

32

PCI Bus

DIO Card

IBM-PC w/SCSI bus

Block

Chip 0

Stimulator Bus

DIN

DCLK

TCLK

RESB

SIM

LE0

To other Block-Chips

Figure 3.4. Top Level Stimulator Architecture.

Figure 3.5 shows how the bus is connected to the stimulator device. The

signals that are common to each block chip, are as follows: DIN, DCLK,

TCLK, RESB and SIM. The unique signals are the LE signals, i.e., each block

chip has its own unique LE signal to let the user control which block chip is

stimulated at what point in time.

33

16 Block-Chips

128
Electrodes

PCI Bus
Stimulator Bus

DIO Card

IBM-PC w/SCSI bus

Stimulator Module

Figure 3.5.Stimulator Bus –Block Chip Interface.

Even though different electrodes in different chips may require waveforms

of different stimulation parameters, the architecture uses a common serial data

line DIN. Doing so is safe from a stimulation standpoint because of the fact

that the respective LE lines that will actually trigger the stimulation as

describe above. Hence for all the 16 block chips we need a bus that is 21 bits

wide, five lines for DIN, DCLK, TCLK, RESB and SIM and 16 lines for LE0

through LE15.

IV. Limitations of this architecture. The DIO card used for the stimulator

system has 32 input/output lines. Since the stimulator system used 21 lines,

using the DIO card to control the stimulator system was a good solution.

Future generations of stimulator systems will require more than 128

electrodes. The next generation stimulator systems as proposed in the visual

prosthesis project and discussed above, have already been theoretically

devised, however, due to unfavorable electrode density, implanting 1024

electrodes is years away. However, planning for the interface to communicate

with a 256 channel system is presently underway. Since for 256 channels

there would be 32 block chips, we would require 32 digital output lines in

addition to the 5 common lines for the whole system. This makes the total

number of digital lines to 37 lines. The current choice of the DIO card is

unable to satisfy these requirements. The solution lies in using 2 of these

cards, using a card with more digital lines, or modifying the way in which LE

signals are transmitted, since LE’s require most number of lines. We now look

at each of these solutions. Using two DIO cards is certainly possible, but

34

given the cost of each card ($900 each) and the amount to computing

resources used for using such a system and the complexity of programming

each card, a simpler solution is required. In addition, use of the DIO card

does not allow for easy portability between computers, especially for

notebook computers,

Using a DIO card with more number of digital lines is delaying the

inevitable. Eventually, stimulator systems would require more and more

number of electrodes. When that happens, a similar problem would arise.

The other solution is to generate the LE in a different fashion. The LE’s

could be transmitted serially on one digital line. The modification requires the

design and fabrication of another chip with a 32-bit shift register. Additional

logic would decide which block chip needs to be sent an LE signal. Even if we

divide the LE’s into two groups and have two 16-bit shift registers, it would

require an extra digital line and almost certainly more chip area. The chip

would also require 32 output lines for the LE’s going to 32 different block

chips. As chip area increases so does its cost to fabricate. Another reason a big

chip area or even an additional chip is a negative quality is that these chips

will eventually be implanted into the visual cortex, and in case of implants,

the smaller they are the more invisible they are to the user. Hence designing

the next generation stimulator requires investigating new PC communication

technologies, some of which are discussed in section 3.2.

3.2 ALTERNATIVE COMMUNICATION LINKS

It is clear that to design a stimulator system that is easy to use and program is the

basis on which it will be accepted widely or not. To do so, the PCI bus based systems

35

need to be re-evaluated. One important factor of doing so, besides the above-mentioned

technological hurdles, is the cost of these commercial off-the-shelf solutions. To reduce

cost, one must consider the latest communication links that are standard with PC’s today.

These are the USB, Firewire, parallel port and the serial port. These solutions are not

expensive as they are already proven communication techniques that have are a number

of compatible devices on the market. The parallel port and the serial port are not good

solutions for our problem, as they are slow and new generation neuroprosthetic chips

require a lot of information at high speed to generate complex waveforms for stimulation.

The other two solutions are firewire and the USB. Firewire is a good solution with up to

400 Mbps of data transfer speed. Firewire was rejected for our solution due to the fact

that there are no freely available IP cores. A freely available USB IP core was found and

was the main motivation of using the USB communication link instead of the firewire

link. A brief description of the advantages of the USB is discussed in section 3.3

3.3 ADVANTAGES OF THE USB

One of the most important reason the USB was chosen for this research was the fact

that all PC’s today have USB ports available. The other important reason is that a readily

available, open source implementation of USB in Verilog RTL was available for use.

Using an open source IP core for the USB, reduced the amount of time required for initial

development, as compared to designing a USB IP core from the ground up. It also

provided with a previously used and tested core, which increased our confidence of

success.

36

The other technology related advantages are:

I. Speed: It supports three speeds, 1.5MBps, 12MBps and 480MBps. The

highest speed is 80MBps more than that of firewire.

II. Reliability: The hardware specification for drivers, receivers and cables

eliminate most noise, in addition to the specification requiring CRC checks.

III. Low cost: Even though USB is more complex compared to older interfaces,

the cables and connecters required are less expensive.

IV. Availability: All PC’s developed today have USB compatible connectors.

V. Flexibility: USB provides for different kinds of data transfers, enabling its use

for different kinds of peripherals.

VI. Support: Good support for developers, both software and hardware. It is also

extensively supported by almost all major operating systems.

CHAPTER 4

THE UNIVERSAL SERIAL BUS

The initial development of the USB was seeded by three motivations, namely,

connection of the PC to the telephone, ease-of-use and port expansion. Before the USB, it

was well understood that the next generation of technology lay in the merger of

37

computing and telecommunication. The traffic of human centric and machine centric data

depends on inexpensive communication links. Such a link already exists in the form of

the Internet. Due to the fact that computing and telecommunication technologies

developed in isolation to one another, an easy-to-use link between the two was needed.

The USB was devised as the answer. To make it easy to use, the USB was designed to be

plug-and-play. This was made possible by developing a large number of application and

systems software for everyday electronic equipment like digital cameras, mice, keyboards

etc. The extensive availability of an additional PC port enabled the explosive rise in USB

compatible computer peripherals.

Due to recent advances in computer processing power, PC’s are now capable of

processing a lot of data. This led to the development of USB 2.0. User applications like

digital imaging and video have demanded a higher bandwidth communication link with

the PC, thus USB 2.0 was designed to transfer data at up to 480 Mb/s.

4.1 USB ARCHITECTURAL OVERVIEW

The USB connects devices with a host. The USB interconnect is a tiered star

topology. A hub is at the center of each star and each wire segment is a point-to-point

connection between the host and hub, or a hub and a function. This topology is shown in

figure 4.1.

38

Figure 4.1. USB Topology.

Due to the timing constraints allowed to hub’s and cable propagation times, a

maximum of 7 tiers are allowed. In these 7 tiers, a maximum of 5 non-root hubs are

allowed. In tier 7 only functions can be allowed. In a USB system there can only be one

host. The USB interface in the host computer is called the host controller. A root hub is

integrated within the host system to provide one or more USB port attachment points.

USB devices fall into two categories: hub’s that provide additional attachment points for

other USB devices, and functions, which provide capabilities to the computer system.

USB devices conform to certain standards defined by the USB specification, namely

their comprehension of the USB protocol, their response to standard USB operations such

as configuration and reset. USB transactions take place on a 4-wire cable. The cable wire

specification is shown in figure 4.2.

39

HOST
HUB

HUB
1

HUB
1 FUNC

HUB
2 FUNC

HUB
3 FUNC

HUB
4

HUB
5

HUB
6

FUNC

Host (Tier 1)

Tier 2

Tier 3

Tier 4

Tier 5

Tier 6

Tier 7

Figure 4.2. USB Cable.

There are three data rates available for USB transfers. High signaling rate is 480

Mb/s, full speed rate is 12 Mb/p and a limited capability low-speed signaling mode is also

defined at 1.5 Mb/s. USB 2.0 host controllers and hubs provide capabilities so that full-

speed and low-speed data is transmitted at high speed between the host controller and the

hub, but transmitted at full or low-speed between the hub and the full-speed or low-speed

device. Having this capability minimizes the impact that full-speed and low-speed

devices have on the bandwidth available for high-speed devices. This is obvious from the

fact that data travels at full or low speed on when absolutely necessary.

There are two ways in which USB devices can be powered. USB devices can be bus

powered or self-powered. Bus-powered devices draw power from the power lines

provided in the USB cable, as shown in figure 4.2. The power available for each USB

port is limited to about 500mA, thus all the bus-powered devices cannot draw more than

500mA of current. If more devices need to be connected, they need to be self-powered.

Such devices usually are wall-plug-in voltage regulators or battery powered systems.

The USB is a polled bus, i.e., the host controller initiates all data transfers. Most bus

transfers comprise of up to three packets. The host controller sends a USB packet

describing the type and direction of the transaction, the USB device address and endpoint

number. This packet is called the token packet. The addressed USB device decodes the

information in the setup packet and either waits for the next stage or initiates the next

40

V
bus D+

D-

GND

stage itself, depending on the direction of the data transfer. This stage is also known as

the data stage. The source of the data, as specified by the setup packet starts the transfer.

The destination responds to the data stage by sending an acknowledgement, stating

whether or not the transfer was successful.

The USB data transfer model between a source and destination on the host and an

endpoint on a device is referred to as a pipe. There are two types of pipes: stream and

message. Pipes have associated data bandwidth, transfer type and endpoint characteristics

like directionality and buffer sizes. An endpoint can be considered as a source or a user of

information/data. For instance, a simple USB device like a flash drive has a minimum of

2 endpoints. One endpoint acts as a sink, i.e., it accepts data from the host computer and

stores it on flash memory. Another endpoint acts as a source, i.e., it sends data to the host

computer. Each endpoint has its own pipe associated with it. Most pipes come into

existence when a device is connected to a host computer. One message pipe called the

Default Control Pipe always exists once a device is powered, in order to provide access to

the device’s configuration, status and control information.

4.2 USB TRANSFER TYPES

There are four data transfer types supported by the USB: control, bulk, interrupt and

isochronous.

I. Control Transfers: Control transfers have two uses. They are used to

facilitate transfers specified by the USB specification and used by the host to

learn about and configure devices, and to carry requests defined by a class or

vendor for any other purpose.

Every device is required by the USB specification to support control transfers

over the default pipe at endpoint 0. As discussed above, each transfer consists

of three stages: Setup, Data (optional) and the Status stages. A stage could

41

consist of one or more than one transactions. At minimum every control

transfer must have a Setup and Status stage. The use of the data stage depends

on the kind of requests by the host or the device. All control transfers require

that all information flow in both directions, the control pipe used both IN and

OUT addresses of the endpoint 0. An IN transaction means that information

travels from the device to the host, and an OUT transaction means that

information travels from the host to the device. On other words all

transactions are looked at from the host’s perspective. In control read transfer

the data in the Data stage travels from the device to the host and in a control

write transfer, the data in the Data stage travels from the host to the device.

The token packet contains a PID that identifies the transfer as a control

transfer. The data transfer contains information about the request, including

request number. The USB specification defines 11 standard requests.

Successful enumeration requires specific responses to these requests.

Enumeration is discussed in detail in section 4.3.

The data size for control transfers can vary according to speed. Low-speed

devices can have a maximum data size of 8-bytes. For full-speed the size

could be 8, 16, 32 or 64 bytes. For high-speed the maximum data size must be

64-bytes.

The host makes its best effort to ensure that all control transfers get

through as quickly as possible. The host reserves a portion of bandwidth

specifically for control transfers: 10% for low and full-speed and 20% for

high-speed transfers.

If a device does not return an expected handshake packet during a control

transfer, the host tries again two times. If after a total of three tries no

42

response is received, the host notifies the software that requested the transfer

and stops communicating with the endpoint until the problem is solved.

II. Bulk Transfers: Bulk transfers are used for transferring data when timing is

not critical. Such a transfer can send large amounts of data without clogging

the bus, because transfers defer to other transfer types and wait for bulk

transfers until bandwidth is available. However, if there are no other pending

transfer types, bulk transfers are the fastest.

Only full and high-speed devices can do bulk transfers. A bulk transfer

consists of one or more IN or OUT transaction. Since a transfer’s transaction

must be all IN or all OUT, transferring data in both directions requires a

separate pipe and transfer for each direction.

A full-speed bulk transfer can have a maximum packet size of 8, 16, 32, or

64-bytes. For high-speed a maximum of 512 bytes is allowed. The host reads

the maximum supported size during enumeration. If the amount of data is

more than the maximum allowed, then the data transaction is broken down

into multiple data packets.

The host controller guarantees that bulk transfers will eventually complete,

but does not reserve any bandwidth for them. Control transfers are guaranteed

10% bandwidth for low and full speeds and 20% for high-speed transfers.

Interrupt and isochronous transfers use the rest of the bandwidth. Hence if a

bus is very busy, a bulk transfer may take very long. If there are no devices

that use interrupt or isochronous transfers, connected to the bus, bulk transfers

are completed very quickly.

Bulk transfers use error detection, hence they are used in applications

where transfer of correct data is required. If the device does not return an

43

expected handshake packet, the host tries up to two times more. Bulk transfers

are designed in such a way that ensures that no data is lost. While they do not

have any error correcting facility, they require that erroneous data be

transmitted again till there are no errors.

III. Interrupt Transfers: Interrupt transfers are useful when data has to transfer

within a specific amount of time. Typical applications are keyboards, mice

and other human interface devices. The bandwidth available for interrupt

transfers is limited for low and full-speed devices, but high-speed increases

the limits and enables an interrupt endpoint almost 400 times as much data as

full-speed. For low-speed devices, the maximum packet size can be any value

from 1 to 8 bytes. For full-speed, the maximum packet size can range from 1

to 64-bytes. For high-speed the range is 1 to 1,024-bytes.

IV. Isochronous Transfers: Isochronous transfers are streaming, real-time

transfers that are useful when data must arrive at a constant rate, or by a

specific time and occasional errors can be tolerated. At full-speed,

isochronous transfers can transfer more data than interrupt transfers, but there

is not provision for re-transmission of data received with errors.

Examples of uses for isochronous transfers include encoded voice and

music to be played in real-time. Unlike with bulk transfers, once an

isochronous transfer begins, the host guarantees that the time will be

available to send data at a constant rate, so the completion time is predictable.

Only full and high-speed devices can do isochronous transfers. Devices

are not required to support isochronous transfers, but certain device classes do

require isochronous data transfers.

44

For full-speed endpoints, the maximum packet size can range from 0 to

1,023-bytes. High-speed endpoints can have a maximum packet size up to

1, 024-bytes.

4.3 USB ENUMERATION

Before applications can communicate with a device, the host needs to learn about a

device and assign it a device driver. Enumeration is the initial exchange of information

between the host and the device, and is the process by which the host learns more about

the device. The enumeration process includes, assigning an address to the device, reading

data structures from the device, assigning and loading a device driver, selecting a

configuration from the available options. Once this is done, the device is configured and

ready to transfer data using any of the endpoints specified in its configuration descriptors.

During the enumeration process a device moves through different device states as

defined by the specification: Powered, Default, Address and Configured. The steps

described below are a typical sequence of events that occur during enumeration.

1. The user plugs a device into a USB port: This puts the device in the powered

state.

2. The hub detects the device: The hub monitors the voltages on the signal lines of

each port. Every USB device has a 15Kohm pull down resistor on either the D+ or

the D- line. If the hub detects a pull down resistor on the D+ line, the device is

full-speed device, if the pull down resistor is on line D- then the device is

configured as a low-speed device.

3. The host learns of the new device: Each hub reports events on its ports to the

host. When the host learns of an event, it sends the hub a Get_port_status request

to find out more about the port.

45

4. The hub detects the speed of the device: The hub looks at the signal lines to

determine what the speed of the device is, as described above.

5. The hub resets the device: After the speed is detected, the host asks the hub to

reset the device. This is done by placing the D+ and D- lines at logic low.

Normally the logic lines have opposite states, they are required to be placed at

logic low to reset the device.

6. The host learns if a full-speed device supports high-speed: Detecting whether a

device supports high-speed uses two special signal states. In the chirp J state, the

D+ line is driven and in the chirp K state, the D- line only is driven. During reset a

device that supports high speed sends a chirp K. A high-speed hub responds with

alternating chirp K’s and J’s. When the device detects the pattern KJKJKJ, it

removes its full-speed pull-up and performs all transfers at high-speed. If the hub

does not respond to the device’s chirp K, the device communicates at full-speed.

Due to this reason all high-speed devices must be able to communicate at full-

speed. For instance, if the hub does not support high-speed, a high-speed device

should still be able to communicate with the host PC in full-speed mode.

7. The hub establishes a signal path between the device and the bus: The host

asks the hub to remove the device from the reset state to the default state. The

USB registers are in their reset states and are ready to accept control transfers

over the default pipe at endpoint 0. The device can now communicate with the

host using the default address 00h.

8. The host sends a Get_Descriptor request: The host requests the device to send

it the device descriptor. This basically tells the host about how the host must

communicate with the device, for the duration of the enumeration process. All

types of descriptors are discussed in section 4.4.

46

9. The host assigns an address: The host assigns a unique address to the device.

The address assigned earlier is a temporary address given to every new device

being enumerated.

10. The host learns about the device’s abilities: The host now requests all the other

descriptors that are stored in the device. This enables the host to know how to

communicate with the device and what the device capabilities are.

11. The host assigns and loads a device driver: Once the host goes through the

descriptors, it tries to match the information in there to the information stored in

its driver information files (for Windows). Once there is a match, the operating

system, dynamically loads the driver.

12. The host’s device driver selects a configuration: Once the device driver is

loaded, it requests a configuration by sending a Set_Configuration command to

the device. The device sets the configuration provided by the command, and the

device is ready for use.

4.4 USB DESCRIPTOR TYPES

Descriptors are data structures of information that enable the host to learn more about

the device. Each descriptor contains information about either the device as a whole, or

about a specific functionality. To be compatible with the USB specification, all devices

must respond to requests for standard USB descriptors. The device, hence, must store the

information and respond to requests for the same in an expected format.

The first descriptor that is requested by the host is the device descriptor. It contains

information about the device as a whole, and specifies the number of configurations

available in the device. The configuration descriptor contains information about the

device’s use of power and the number of interfaces supported by the device. Each

interface descriptor has associated with it zero or more endpoint descriptors. After the

47

device descriptor is sent to the host, the device receives a request for the configuration

descriptor. After the host receives the configuration descriptor, it also gets to know the

total number of bytes in all the descriptors except the device descriptor. The host then

requests the configuration descriptor again, but this time it requests the device to send all

the other descriptors associated with it. Hence, all the interface and corresponding

endpoint descriptors are also sent in one request. Each descriptor type is described below.

I. Device Descriptor

Table 4.1. Device Descriptor.

bLength: The length in bytes of the descriptor.

bDescriptorType: The constant DEVICE (01h), used for the device descriptor.

48

Offset
(Decimal)

Field Size
(Bytes)

Description

0
1
2
4
5
6
7
8
10
12
14

15

16

17

bLength
bDescriptorType
bcdUSB
bDeviceClass
bDeviceSubClass
bDeviceProtocol
bPacketMaxSize
idVendor
idProduct
bcdDevice
iManufacturer

iProduct

iSerialNumber

bNumConfigurations

1
1
2
1
1
1
1
2
2
2
1

1

1

1

Descriptor size in bytes
Constant DEVICE (01h)
USB spec. Rel number.
Class code
Subclass code
Protocol code
Max packet size for EP0
Vendor ID
Product ID
Device release number
Manufacturer string
descriptor index.
Product string descriptor
index.
Serial number string
descriptor index.
Number of possible
configuration.

bcdUSB: The USB specification number to which the device and its descriptors are

compatible. For version 1.1, this value will be 0110h.

bDeviceClass: This field is for devices that belong to a class. Values from 1h to FEh

are reserved for USB defined classes. Not all devices must belong to a class.

bDeviceSubClass: This field specifies the subclass for the device.

bDeviceProtocol: This field specifies the protocol that the device complies with.

bMaxPacketSize: This is the maximum packet size of the endpoint 0.

idVendor: This is a unique ID for a particular vendor. Vendors who pay a fee, are

given a unique ID that they can use for their products. This value is also stored in the

INF file for the device. The operating system matches this value with the value

received from the device and it knows which device driver to load.

idProduct: This ID number is assigned by the device manufacturer to distinguish

between different products.

bcdDevice: This is the device release number in bcd format. This value can also be

used to decide which driver to load.

iManufacturer: This is an optional field. It points to a location, which stores string

information about the manufacturer.

iProduct: This is also an optional field. It points to a location, which stored string

information about a product.

iSerialNumber: This is the index of a string that points to the device serial number.

bNumConfigurations: This is the number of configurations the device supports. A

particular configuration defines the device’s capabilities and features. For instance, a

digital video camera may be designed to function in two modes. One mode might be

recording mode, and another might be playback mode. The camera can only be in one

mode at a particular time. Thus the features of such a camera can be divided into two

49

different configurations, which can be loaded as the user so chooses. The software

can thus function depending on which mode the camera is in.

II. Configuration Descriptor

Table 4.2. Configuration Descriptor.

bLength: The length in bytes of the descriptor.

bDescriptorType: The constant configuration (02h).

wTotalLength: The number of data bytes that the descriptor returns, including all the

interface and associated endpoint descriptors.

bNumInterfaces: The number of interfaces the configuration supports. The

minimum number is 1.

bConfigurationValue: Identifies the configurations for configuration requests.

Should be more than 0.

50

Offset
(Decimal)

Field Size
(bytes)

Offset
(Decimal)

0
1

2

4

5

6

7
8

bLength
bDescriptorType

wTotalLength

bNumInterfaces

bConfigurationValue

iConfiguration

bmAttributes
MaxPower

1
1

2

1

1

1

1
1

Descriptor size in bytes.
Constant CONFIGURATION (02h)

Size of all data returned for this
config in bytes
Number of interfaces the
configuration supports.
Identifier for Set_Configuration and
Get_Configuration requests.
Index of string descriptor for
configuration.
Self power/bus power settings.
Bus power requirements.

iConfiguration: Index to a string that describes the configuration. This field is

optional.

bmAttributes: Bit 6 = 1 if a device is self-powered. Bit 5 is 1 if the device supports

remote wakeup feature. Bits 0 through 4 should be 0 and bit 7 must be 1.

MaxPower: Specifies how much power a device requires from the USB.

III. Interface Descriptor

Table 4.3. Interface Descriptor.

bLength: The number of bytes in the descriptor.

bDescriptorType: The constant interface (04h).

bInterfaceNumber: This field identifies the interface. This value should be unique

for every interface. An interface controls and specifies device resources for every

feature.

bAlternateSetting: When a configuration supports multiple, mutually exclusive

interfaces, each interface must have a descriptor with the same value in

bInterfaceNumber but a unique value in bAlternateSetting. Default value is 0.

bNumEndpoints: This is the number of endpoints supported by each interface.

bInterfaceClass: This field is similar to the field DeviceClass in the device

descriptor.

51

Offset
(decimal)

Field Size
(bytes)

Description

0
1
2
3
4

5
6
7
8

bLength
bDescriptorType
bInterfaceNumber
bAlternateSetting
bNumEndpoints

bInterfaceClass
bInterfaceSubClass
bInterfaceProtocol
bInterface

1
1
1
1
1

1
1
1
1

Descriptor size in bytes.
The constant Interface (04h)
Number identifying this interface.
Value used to select alternate setting.
Number of endpoints supported,
except 0.
Class code
Subclass code
Protocol code
Index of string descriptor for the
interface.

bInterfaceSubClass: This field is similar to the field bDeviceSubClass in the device

descriptor. The value is a code defined by the USB specification, if the device

conforms to a particular subclass of devices.

bInterfaceProtocol: This is similar to bDeviceProtocol. Its value should be either

user defined or should be pre-defined by the USB specification.

iInterface: This is an index to a string that describes the interface.

IV. Endpoint Descriptor

Table 4.4. Endpoint Descriptor.

bLength: The number of bytes in the descriptor.

bDescriptorType: The constant INTERFACE (04h).

bEndpointAddress: This includes the endpoint number and direction. Bits 0 through

3 are the endpoint number. Low-speed devices can have a maximum of 3 endpoints

(numbered 0 through 2), full and high-speed devices can have 10 (0 through 15)

52

Offset
(decimal)

Field Size
(bytes)

Description

0
1
2
3
4
6

bLength
bDescriptorType
bEndpointAddress
bmAttributes
wMaxPacketSize
bInterval

1
1
1
1
2
1

Descriptor size in bytes.
The constant Endpoint (05h)
Endpoint number and direction.
Transfer type supported
Maximum packet size supported.
Maximum latency/polling
interval/NAK rate.

endpoints. Bit 7 is the direction: OUT = 0, IN = 1. Bits 4, 5, and 6 are unused and

must be 0.

bmAttributes: Bits 1 and 0 specify the type of transfer the endpoint supports. 00 =

Control, 01 = Isochronous, 10 = Bulk and 11 = Interrupt. For endpoint 0 control

transfer type is assumed. Bits 6 and 7 must be 0. Bits 3 and 2 specify synchronization

type, 00 = no synchronization, 01 = asynchronous, 10 = adaptive and 11 =

synchronous. In most cases bits 3 and 2 are 00. Bits 5 and 4 indicate usage type: 00 =

data endpoint, 01 = feedback endpoint, 10 = implicit feedback data endpoint, 11 =

reserved. For non-isochronous endpoints bits 2 through 5 should be 0.

wMaxPacketSize: The maximum number of data bytes the endpoint can transfer in a

transaction. Bits 10 through 0 are the maximum packet size from 0 to 1024. All other

bits are set to 0.

bInterval: For full-speed bulk transfers this value is ignored. It is usually used for

interrupt and control endpoints.

The above-described descriptors are necessary and sufficient for a simple USB

device. The information in these descriptors tells the host everything there is to know

about how a device functions and how it should communicate with it. The descriptor field

values used in this project are shown in appendix B. A detailed description of choice of

transfer type based on the application specification is also provided. In addition to this, an

analysis of bandwidth usage is also done while keeping in mind the latency requirements

of the application device.

53

CHAPTER 5

THE USB STIMULATOR DEVICE

The USB stimulator device was designed to investigate the feasibility of using the

USB as a communication link between the PC and the block-chip. The system was

designed and tested successfully first in an FPGA environment. A detailed description of

the hardware prototype is given in chapter 6. This chapter provides an overview of the

logical and architectural design and implementation of the stimulator system.

The main component of the system is the USB core. This core is an open source core

and is freely available for use in research or commercial projects. It has been successfully

used in different research and commercial projects all over the world.

Most USB cores available require a direct connection with a microprocessor or a

microcontroller. This is done so that the descriptor database can be stored in ROM and

changed as needed. Embedded software is responsible for accepting and responding to

descriptor requests from the host. Using such a core increases the cost of the whole

project due to the microprocessor, in terms of economic and labor cost.

Some cores include state machines that automatically perform the function of the

microprocessor. These state machines recognize, accept and reply to descriptor requests

from the host. Such a core was used for this system. As described in section 5.1, the USB

core reproduces data transferred by the host into a parallel interface of 8-bit packets. This

54

parallel interface can then be connected to a microprocessor or custom logic to perform

the required function. A detailed architectural description of the USB core and the two

block chip interfaces is done in the following sections.

5.1 THE USB CORE

The USB core can be divided into different functional blocks. A block diagram of the

blocks and their interconnections is shown in figure 5.1.

Figure 5.1. The USB Core Functional Blocks.

The USB 1.1 transceiver used for the system was a commercially manufactured IC

chip. The USB port used was a standard type A connector. All the other blocks have been

implemented in Verilog HDL. Some of the above blocks are top-level blocks, i.e., they

consist of more than one lower level Verilog modules. This section also describes the

overall functioning of the USB core from a data-flow perspective.

During enumeration, the host communicates with the USB device and receives the

stored descriptors. Prior to compilation of the Verilog code for the core, the ROM module

is initialized with descriptor attributes as described in chapter 4. The actual attribute

55

USB 1.1
Transceiver

USB
PHY

UTMI
Interface

Protocol

Layer

Controller

ROM

Endpoint 0
FIFO IN

&
Endpoint 0
FIFO OUT

USB Port

values that were used are stated and explained later in this section. When the device

receives a descriptor request from the host, the protocol layer verifies protocol

compliance. Once the data has been decoded, it is forwarded to the controller module.

This module responds to the descriptor request, by reading the descriptors from the

ROM. Once all the descriptors have been read and the operating system has assigned a

driver, the device is ready to receive data from the host. When the host sends the device a

data packet, the protocol layer decodes the data packet and also decodes the destination

information. If the data packet is meant for endpoint 1, the data is forwarded to the

endpoint 1 FIFO. Once the packet is stored in the endpoint FIFO, it can then be read by

the function. The signals that facilitate the writing of data packets to the FIFO are the 8

data lines, 1 write enable line and 1 FIFO full line. Data is received in 1-byte words. The

timing diagram of a data transfer is shown in figure 5.2.

Figure 5.2. Endpoint Data Transfer Timing Diagram.

For a data packet with 8-bytes of data, the USB core outputs 8-bits of data eight times

to completely store the 8-byte data packet into the FIFO. The timing diagram for an 8-

byte packet is shown in figure 5.3.

Figure 5.3. Timing Diagram for 8-Byte Data Packet.

56

Data Valid8-bit Data

Write Enable

D0 D1 D2 D3 D4 D5 D6 D78-bit Data

Write enables

Figure 5.4 shows the actual waveform that is seen in a logic analyzer. The signal lines

shown are for Data, endpoint 1 read enable, clock, endpoint 1 write enable, empty and

full signals.

Figure 5.4. Logic Analyzer Waveform.

The system was initially implemented and tested on a customized FPGA development

board. The electrical specifications and diagrams are discussed in chapter 6.

5.2 USB-BLOCK CHIP INTERFACE

This interface was designed to be compatible with the timing diagram discussed in

section 3.1, and shown in figure 3.3. The interface has four lines: DCLK, DIN, TCLK

and LE, as described by the block chip specification in section 3.1. A partial listing of the

Verilog HDL code for this interface is given in appendix A.

57

The interface was designed to control a single block chip. Using a single block chip

simplified the implementation and testing of the initial version. The entire interface was

downloaded to an FPGA with the four block chip compatible lines. A block diagram of

the overall system is shown in figure 6.1.

 The system used 2 FPGA’s for its implementation. One FPGA was configured with

the USB core. The second FPGA was configured as the USB-Block chip interface. This

system consisted of only one endpoint. This endpoint was in the form of an 8-byte FIFO.

The timing and functional specification of this endpoint 1 FIFO is the same as the

endpoint 0 FIFO described in section 5.1. As shown in figure 5.4, there are 8 writes to a

FIFO in a data packet. After each write, the interface controller is designed to read in the

written byte. Due to a design limitation in the USB core, the controller was designed not

to let the FIFO become full. If the FIFO becomes full, the USB core goes into an infinite

loop, i.e., it writes the same 8-byte data to the FIFO. This sequence of writes and reads

can be seen in figure 5.4.

The data format for the packet is set based on whether the system supports little-

endian or big-endian. Little-endian" means that the low-order byte of the data packet is

stored in memory at the lowest address, and the high-order byte at the highest address.

Big-endian" means that the high-order byte of the number is stored in memory at the

lowest address, and the low-order byte at the highest address. The USB system as

implemented is a little-endian system. The data, as sent by the PC to the USB core is

shown in figure 5.5.

58

Figure 5.5. Interface Data Format.

In figure 5.5, the lower byte 1F is output first on the USB, and subsequently A2 and

then 00 and 00. Once the interface controller receives these bytes, the first 2 bytes are

loaded into a shift-register. Once the 16-bits of block chip data is loaded, it is shifted out.

Although the block chip requires only 2-bytes, the FIFO size for the USB core is set to 8-

bytes. There are two reasons for doing so. The first reason is to provide for enough

address space for more than 1 block chips. The stimulator system can be designed to

incorporate 16 or 32 block chips. An extra 16-bit space can be used as LE activation

fields for the block chips. For instance, if for a particular stimulation, block chips 1, 4,

and 7 are required to be stimulated with the same parameters. The first two bytes will

have the block chip data, the next 16 bits will be address mapped from LE0 to LE15.

Thus for block chip 1, 4 and 7, the LE1, LE4 and LE7 bits will be asserted. The controller

then would output an LE pulse on each of the above lines at the same time. This feature,

in addition with the hold-off bit will enable simultaneous stimulation of any electrode

with the same stimulation parameters. The other advantage of having an 8-byte FIFO is

discussed in section 5.3.

59

AD2 AD1 AD0 A6 A5 A4 A3 A2 A1 A0 T3 T2 T1 T0 P H
 0 0 0 1 1 1 1 1 1 0 1 0 0 0 1 0

 0000 0000 0000 0000
Word 1 (2-bytes)

Word 2 (2-bytes)

(0000 0000 0000 0000 1010 0010 0001 1111)
2
 = (41,503)

10

 0 0 0 0 A 2 1 F

Data sent to
the USB
device

5.3 USB-NEUROTALK INTERFACE

The NeuroTalk family of integrated chips is a new family of chips being designed at

the Illinois Institute of Technology keeping in consideration the specific needs of the

neuroscience community. The neuroscience researcher has traditionally used

commercially available integrated circuits (IC). Since these IC’s have a variety of

different applications, they are manufactured in bulk, thus providing a low cost solution

for neuroscience and other applications, both commercial and research.

Neuroscience is currently proceeding towards the study of a population of neurons,

rather than single neurons. Arrays of electrodes are being used to stimulate and record

neural signals. It is well recognized that significant advances in the field of

Neuroprosthesis will come about with the understanding of how to use large number of

electrode arrays as a two-way informational link with the brain, or with neurons

anywhere else. Due to the large number of interface channels required, the circuit

requirements for neuroscience devices are growing with respect to commercially

available components. Due to these reasons many researchers, either have to adapt, or to

make a compromise in order to use commercially available components. To solve this

problem, the NeuroTalk interface was designed and the first block chip that supports such

an interface was fabricated. For this research, a USB-NeuroTalk interface was designed

that converts USB data received, into NeuroTalk compatible instruction stream. This

instruction stream is then sent to a NeuroTalk compatible block chip for processing and

execution. A description of the NeuroTalk interface is described and a timing diagram is

shown in figure 5.6.

60

DCLK

TAG

DATA D0 D1 D2 D3 D4 D5 D6

Figure 5.6. NeuroTalk Bus Timing.

The NeuroTalk interface consists of three signals, Dclk, Tag and the Data signal. The

Dclk is the data clock using which the data is shifted into the block chip. The Tag signal

is used as a reset signal. In the above timing diagram, we can see that the tag signal is

initially high. The next rising edge of Dclk, after the Tag goes low, clocks in the first data

bit on the 1-bit Data signal. All subsequent Data bits are read in by the block chip, as they

are transmitted from the USB-NeuroTalk interface. When the Tag signal goes high, the

shift register in the block chip is reset. Hence, Tag can be used to cancel the execution of

a particular instruction stream, once it has been loaded into the shift register.

The NeuroTalk specification calls for variable length instruction commands. Doing so

provides for multiple instructions and maximizes functionality of the block chip. The

older version of the block chip accepted only fixed-length 16-bit long instructions. Each

instruction is addressed to a single electrode channel. Having more than one instruction

can add different and advantageous functionality to the block chip. For instance, in

addition to the stimulation instruction of the old block chip, one instruction can be

designed to send the same waveform parameters to more than one channel. If we consider

the example of visual prosthesis, another kind of block chip architecture can be

considered. Biological vision is very similar to computer vision; both cases include

frames of external objects. For artificial vision, a similar two-dimensional frame buffer

can be implemented in hardware. This buffer can be designed to hold a certain number of

instructions. Different instructions can then be implemented to update and flush the

buffer, start or stop the stimulation. A number of variations can be implemented for each

of the mentioned instructions. Due to the variations and different kinds of instructions, a

large storage space is needed in the endpoint of the USB core. Using an 8-byte FIFO can

61

adequately provide for the instruction storage for the first few versions of the NeuroTalk

block chips.

5.4 USB BANDWIDTH ANALYSIS

To accurately determine the speed with which our stimulator devices can accept data,

a bandwidth analysis needs to be performed. Even though the USB core runs at 48MHz,

it does not provide data at that same rate. To guard against over- and under-flow of data,

appropriate measures must be taken. For this very reason a FIFO is used. This section

discusses the full-speed bulk transaction limits that every bulk connection adheres to.

Table 5.1 below shows the table 5-9 shown in the USB 2.0 specification document in

section 5.8.4. Note: Each frame in full-speed mode is 1ms long.

Table 5.1. Full-speed Bulk Transaction Limits.

For a payload of 8-bytes, the maximum transfers allowed are 71. Thus the total

number of bytes that are transferred per frame are 71 x 8 = 568-bytes. 568,000 bytes are

transferred every second (568 x 1,000 = 568,000). If only 2 out of the 8-bytes are used,

about 71 x 2 = 142 useful bytes are transferred per frame (1ms), and 142,000 useful bytes

62

Data
Payload

Max
Bandwidth

(Bytes/second)

Frame
Bandwidth

Per
Transfer

Max
Transfers

Bytes
Remaining

Bytes/frame
Useful Data

1
2
4
8
16
32
64

 Max

107,000
200,000
352,000
568,000
816,000

1,056,000
1,216,000
1,500,000

1%
1%
1%
1%
2%
3%
5%

107
100
88
71
51
33
19

2
0
4
9
21
15
37

107
200
352
568
816
1,056
1,216
1,500

are transferred per second. On a per-second timeline, only about (142/568 x 100 = 25%)

25% of the bandwidth is used.

For this research, a FIFO of 8-bytes was used, as described above. The extra 6-bytes

are used as an extra buffer for the USB-NeuroTalk interface which has a largest

instruction size of 26-bits. The extra 6-bytes can also be useful for instruction set

upgrades in future versions of the NeuroTalk interface.

CHAPTER 6

FPGA PROTOTYPE DESIGN

The prototype was initially verified and validated on a custom designed FPGA board.

The FPGA board was designed to accommodate two ALTERA FLEX 10K FPGA chips.

One FPGA was configured with the USB core, after being configured with the required

number and sizes of the endpoints. The ROM, which was also a part of the USB core,

was initialized with the appropriate descriptor values. A USB 1.1 transceiver chip from

Fairchild Semiconductors was used as the bus front-end. It ensured electrical

compatibility with the USB standard. The FPGA’s were programmed using ALTERA’s

Quartus II software. Programming circuits were designed for both FPGA’s on the

prototype boards to facilitate re-programming at any stage in development. The second

FPGA was used to program either the USB-Block chip interface or the USB-NeuroTalk

interface. This FPGA has two sets of I/O’s; one set is responsible for accepting data

packets from the USB core FPGA. The second set of signals is either block chip, or

NeuroTalk interface compatible.

FPGA programming circuits were designed and added to the prototype board to

program the FPGA’s. FPGA’s can be programmed in two different ways. One way is to

63

use a programming cable for each re-programming; the second option is to store the

programming information in an EEPROM. The option of using EEPROM to store

programming information was not used since developing the prototype required

constantly modifying the design and re-programming the FPGA’s. Hence during initial

development, to simplify the hardware, the cable programming method was employed. A

block diagram of the prototype board is shown in figure 6.1.

Figure 6.1. Prototype Board Block Diagram.

The figure in 6.1 provides an overview of the prototype system developed. A brief

description of each block is provided below.

Power Supply: The power supply was designed to supply power to the USB transceiver;

the two FPGA’s and programming sub-circuits, the crystal circuit, and the Block chip.

The transceiver and the FPGA programming circuits required a power supply of 3.3

64

FPGA1
USB CORE

FPGA2
Block chip/
NeuroTalk
Interface

Block

Chip

USB 1.1
Transceiver

Power Supply

FPGA
Program

Sub-Circuit

FPGA
Program

Sub-Circuit

Programming
Cable Sockets

.……
…….……. …….

48 MHz
Crystal
Circuit

USB
Cable

volts. This was achieved using the LM317 adjustable voltage regulator. The circuit

diagram and component values are shown in figure 6.2.

Figure 6.2. Adjustable Voltage Regulator.

The equation used to set the output voltage by varying R2 is shown below. Resistor

R1 is set to 240 . The equation for Vo is (Vref is 1.25 Volts):

Vo = Vref (1 +
1

2

R

R
)

For a Vo of 3.3 volts, R2 = 393.6 Ohms or approximately 400 Ohms. The FPGA’s,

along with an I/O voltage supply of 3.3 V, require a core voltage of 2.5 Volts. To achieve

65

LM317

C
i C

o

R1

R2

V
I

V
O

V
ref

2.5 Volts the value of R2 is required to be 240 Ohms. The block chip requires two

different voltage levels. It requires 5 Volts for Vcc and for VINDIF, and 10 Volts for the

high voltage supply VHV. The VHV was derived using a 10 Volt zener diode and the two 5

Volt supplies were powered by one 7805, 5 Volt regulated power supply.

The crystal oscillator was powered using another 7805-voltage regulator to supply the

required 5 Volts.

48 MHz Crystal Circuit: The clock generation circuit was designed using a 48 MHz

crystal, a 5K-Ohm resistor and a 10pF and 15pF capacitor. The clock was generated

using a HEX inverter IC. The circuit is shown in figure 6.3.

Figure 6.3. Clock Generation Circuit.

The circuit designed above, generated a clock of 48MHz that was required by the USB

core to sample and decode the USB signals coming from the PC.

FPGA1 (USB Core): The FPGA’s have a total of 144 pins, including power,

configuration and I/O pins. The six front-end pins of the USB core were connected to the

transceiver. These pins conformed to the standard USB transceiver specification. Eight

66

Clk

15pF

10pF

5K Ohm 48MHz

data signals, one write enable (Wen) signal and one FIFO full signal were the outputs to

the interface FPGA2. Figure 6.4 shows the various connections.

Figure 6.4. USB Core Input/Output Connections.

FPGA2 (Block chip/NeuroTalk Interface): The Interface FPGA, as shown in figure 6.4

had 10 I/O lines on its front-end and 4 I/O lines on its back-end (Block chip side) as

shown in figure 6.5.

Figure 6.5. Interface Core Input/Output Connections.

FPGA Program Circuit: The FPGA’s were programmed using the ByteBlaster parallel

port download cable as described by the Altera programming data sheet. Table 6.1 shows

the ByteBlaster 25-pin header pin-outs.

67

USB

Txver

USB Core

FPGA 1

Interface
Logic

FPGA 2

8 Data
Lines

Wen

FIFO
Full

Rx

Tx

USB Core

FPGA 1

Interface
Logic

FPGA 2

8 Data
Lines

Wen

FIFO
Full

TCLK

DCLK

DATA

LE

TAG

Table 6.1. ByteBlaster 25-Pin Header Pin-Outs.

The 25-pin header plugs into the LPT/Parallel port of the PC. The other end of the

cable has a 10-pin female header, which has pin connections shown in table 6.2. The

programming circuit must provide VCC and GND to the cable at the appropriate pins

shown in table 6.2.

Table 6.2. ByteBlaster Female 10-Pin Header Pin-Outs.

The ByteBlaster schematic diagram is shown in figure 6.6. It shows an octal driver IC

that is required to configure the FPGA’s. The 10-pin female header plugs into the circuit

board and the 25-pin end plugs into the PC and is sent configuration data by the Quartus

II software.

68

Pin Signal Name

2
3
8
11
13
15
18-25

DCLK
NCONFIG
DATA0
CONF_DONE
NSTATUS
GND
GND

Pin Signal Name Description

1
2
3
4
5
6
7
8
9
10

DCLK
GND
CONFIG_DONE
VCC
nCONFIG
NC
nSTATUS
NC
DATA0
GND

Clock Signal
Signal Ground
Configuration
Power Supply
Configuration
No Connect
Configuration Status
No Connect
Data to Device
Signal Ground

Figure 6.6. ByteBlaster Download Cable Schematic.

6.1 USB-BLOCK CHIP INTERFACE

The USB-Block chip interface was implemented using Verilog HDL. The interface

has all the signals specified in the block chip specification document. The functioning of

69

R4

R2

4
3
7

VCC

74HC244

1G
2G
1A1
1A2
1A3
1A4
2A1
2A2
2A3
2A4

VCC
GND
1Y1
1Y2
1Y3
1Y4
2Y1
2Y2
2Y3
2Y4

14

2

3

8

9

VCC

GND

R5

R6

R3

9
1
5

R6

R1

2, 107

10

12

11

13

15

18-25 GND

GND

25-Pin Male Header
Connections

10-Pin Plug
Connections

the block chip interface depends on the DCLK. The interface shifts out the block chip

instruction to the block chip for execution. This requires the interface to output each bit

out of the 2-byte instruction, one at a time. Completely transferring the 16-bits requires

16 DCLK cycles as the DCLK is used by the block chip to read in the data in its shift

register. After successfully shifting out the data, the interface outputs a 200ns long LE

pulse, 200ns after the shifting out of the last bit. Hence the total time taken for one

complete transfer to take place is 16 * (1 DCLK cycle time) + 200ns + 200ns. The DCLK

frequency used for the device is about 2.4MHz. Each cycle will thus be 416.6ns long. So,

one complete instruction transfer will take place in 7.066  s. Using this time

information, a verilog module that counts each DCLK cycle was designed. Depending on

what the state of the interface is, the interface will decide on when an LE pulse needs to

be output. Once the transfer is complete, the time counter resets itself and waits for the

next instruction to be transferred.

Figure 6.7. Block Chip Interface Block Diagram.

Figure 6.7 shows the block diagram for the block chip interface logic. The write

enable signal is used as an input to both the FIFO and the interface block. As each byte of

data comes in, it is used by the interface and prepared to be sent to the block chip serially.

70

Endpoint 1

FIFO

Block
Chip

Interface

wr_en

8-bit
Data

8-bit
Data

DIN

DCLK
TCLK
LE

r_en

6.2 USB-NEUROTALK INTERFACE

After the successful testing of the USB-Block chip interface, the neurotalk interface

was designed to interface with the USB. Although it had certain similarities with the

block chip interface, it took considerably less time to design due to the fact that the

interface to the USB core had already been studied extensively while designing the USB-

block chip interface. While the USB-block chip interface took about 16 weeks to design

and implement, it took only about 1 week to design, implement, test and debug the USB-

Neurotalk interface. Out of the 16 weeks for the block chip interface, it took 4 weeks to

design the FPGA development board, and 12 weeks to learn the inner functioning of the

USB core.

6.3 FPGA DEVELOPMENT BOARD

The FPGA development board was custom designed without the use of a printed

circuit board. The general layout of the board is shown in figure 6.1. A photograph of the

board is shown in figure 6.11. The board used two TQFP sockets for the two FPGA’s and

a QFN socket for the USB 1.1 transceiver. Each of the two FPGA’s required two

different power supplies of 2.5 volts and 3.3 volts. The board also has a block chip DIP-

40 socket.

71

Clock
Generation
Circuit FPGA Power FPGA 1 FPGA 2

Tranceiver

Figure 6.8. Photograph of the FPGA Development Board.

6.4 DEVICE DRIVER AND APPLICATION

The Microsoft device driver development kit has sample device drivers available for use.

One of these drivers was a bulk endpoint compatible driver and was used for this

research. Along with the driver, a sample application was available that was modified to

send block chip compatible data to the device.

72

USB
Socket

Blockchip

Programming Circuits

CHAPTER 7

USB-INTERFACE SYSTEM TESTING

The complete system was tested in three stages. The first stage involved testing the

FPGA development board since it had five different sub-circuits. The power, two FPGA

programming, clock generation and block chip circuits were tested and their nominal

performance verified. The second stage involved testing the USB core and verifying that

it actually functioned as stated by the designer. The third stage involved testing of the

complete system including both the interfaces. Each of the three-stage testing

methodologies is described in the following sections and test results of each are shown.

7.1 FPGA BOARD DESIGN AND TESTING

The FPGA board was custom designed without the use of manufactured PCB’s. This

method was used for the initial prototype due to the fact that it is very difficult to modify

PCB traces in case if even a simple modification is required. Even though the

modification is simple, implementing a complex system is tedious work due to the fact

that the FPGA socket and the transceiver socket pins were small. Hence magnet wire was

used to make the necessary logic line connections under a microscope. Making the

necessary connections and verifying them required that the connections be viewed under

the microscope. For the power circuits, a higher gauge wire was used. Once all the

power, clock and programming circuits were built, an FPGA was inserted in one of the

sockets and tested for programmability. Initially program configuration failed. It was

later discovered that the power pins for each of the four banks of the FPGA need to be

powered for the FPGA to program and function correctly, even if one or more sides are

not used. Once the FPGA was fully powered, the FPGA configured successfully. Once

the general circuit connections for one FPGA were verified and validated, the circuit

73

connections were replicated for the second FPGA. A photograph of the circuit

connections for the FPGA board is shown in figure 7.1.

Figure 7.1. Photograph of underside of FPGA Prototype Board.

7.2 USB CORE TESTING AND VERIFICATION

The USB core chosen was obtained from www.opencores.org, and since it was

obtained in open source form, it lacked detailed documentation. The top-level verilog

module consists of endpoint I/O’s, pins for the USB 1.1 transceiver and other status

signals. The transceiver and USB core interface circuit is shown in figure 7.2.

74

Vbus

OE*
RCV

VP
VM

VPO
VMO

D-
D+

tx_oe
rx_d
rx_dp
rx_dn
tx_dp
tx_dn
mode

8-bit data

wr_en

http://www.opencores.org/

Figure 7.2. Circuit Diagram of Transceiver and USB Interface.

According to the overall design of the USB core, the 8-bit data bus shown in figure

7.2, the write enable, wr_en signal, the empty and full signals play a part in the data

transmission. Once the USB receives a data packet from the PC, it is decoded according

to the USB specifications and forwarded to the OUT endpoint FIFO through the 8-bit

data bus. In the USB system, initially, there were two unknowns. It was not known which

driver could be used for the device. The other unknown was whether or not the USB core

functioned properly as it was implemented. To increase the chances of the device

functioning, one unknown had to be removed. The obvious choice was the

driver/application to be used. A few USB debug applications were installed to test the

device. It was assumed that these devices had the requisite generic drivers that would

enable the PC to successfully communicate with the USB core, provided the core was

implemented correctly.

Once a data packet successfully arrives at the core, it is then placed on the data bus 8-

bits at a time. When each byte is valid on the bus, a pulse is sent on the write enable

signal. The byte is then written into the OUT endpoint FIFO. Once the complete packet is

written, or even before it is written, the data can be used by the endpoint function. One

test strategy was to monitor the eight data lines and the write enable lines to ascertain the

arrival of the data packet at the USB core. As stated above, while conducting the test, it

was assumed that the PC was correctly sending the data to the USB device.

75

GND

24

24

D-

D+

Vcc
1.5K

Empty

Full

Initially when the device was powered up and connected to the PC, the Windows

operating system did not acknowledge the addition of the device to the USB bus. Tests

were run using a USB configuration snooping software, and it was discovered that the

device was not completing the enumeration process, as it should to be recognized by the

PC. When a device is first connected to a USB port, the PC sends a particular sequence of

commands to the device, and it expects a reply to each of the three commands it sends. If

for any reason this query and reply session fails, the device enumeration fails and the PC

does not recognize the device. This is what the symptoms were in the case of the USB

device. Hence it was hypothesized that the device is not being recognized due to some

failure in the enumeration process. To trace the problem, a logic analyzer was hooked to

certain test points on the FPGA that tracked the requests and replies flowing between the

USB core and the PC. Since the core had two FIFO’s, one each for the PC requests and

the core replies, it was fairly simple to setup the test. The data acquired by the test is

reproduced below in figure 7.3.

76

Packet 1 from PC Host

Byte 1: A5: Start of Frame
Byte 2: EC: Frame # +
Byte 3: 9C: CRC5
Byte 4: 2D: Setup
Byte 5: 00 Addr.+Endp.+
Byte 6: 10 CRC5
Byte 7: C3: Data PID

Byte 8: 80: bmRequestType
Byte 9: 06: bRequest
Byte 10: 00: descriptor type
Byte 11: 01: descriptor index
Byte 12: 00: wIndex high
Byte 13: 00: wIndex low
Byte 14: 40: wLength high
Byte 15: 00: wLength low
Byte 16: DD: CRC16
Byte 17: 94: CRC16

Figure 7.3. Enumeration Failure Test Results.

The test as described above was successful in locating the source of the enumeration

failure. The problem was due to an extra byte that was added on the reply by the USB

device. This extra byte had all bits set to 0, as can be seen in figure 7.3. Although, the

problem was known, locating the source took a considerable amount of time since the

inner code of the USB core needed to be looked at and studies, without any formal

documentation. After about 3 weeks of intense search, the source of the problem was

positively identified and eliminated.

In the initial phase of device development, Altera’s MAXPLUS II software was used.

In the USB core, four FIFO’s were implemented. Two FIFO’s were used for the control

endpoint, one each for IN and OUT endpoints. Another FIFO was used for OUT endpoint

1. The forth FIFO was a smaller FIFO used as a pre-fetch FIFO for enumeration. To

successfully compile the USB core in MAXPLUS, certain changes were made to the

FIFO’s. The endpoint FIFO’s were instantiated using library SRAM modules provided by

MAXPLUS. The smaller pre-fetch FIFO, however, was implemented by using the reg

keyword available in Verilog. MAXPLUS, did not synthesize an SRAM using the reg

keyword because this feature was not supported in that particular version. The

77

Reply from Device to PC

Byte 11: 34:
Byte 12: 12:
Byte 13: 78:
Byte 14: 56: Bytes 10 to 18 of
Byte 15: 01: Device descriptor
Byte 16: 00:
Byte 17: 00:
Byte 18: 00:
Byte 19: DE:
Byte 20: D2: CRC16
Byte 21: 00: CRC16

Byte 1: 4B: Data PID
Byte 2: 00: Should be 12, byte-3
Byte 3: 12:
Byte 4: 01:
Byte 5: 10: Bytes 1 to 9 of
Byte 6: 01: Device descriptor
Byte 7: 00:
Byte 8: 00:
Byte 9: 00:
Byte 10: 40

implementation for the smaller FIFO was then changed to make use of the library SRAM

modules. After the change, the complete USB core successfully compiled without any

syntax errors, and work continued on implementing the USB-block chip interface. During

this initial phase, the PC on which the core development was being done had to be

replaced with another. This required installing the software on the new machine. By then

Altera had phased out the older MAXPLUS software and required developers to

download and install an upgraded version of the software with better features and

advanced options, called Quartus. Once the installation was done development went on

without incident. The cause of the enumeration failure, it was discovered, was the change

done in the implementation of the smaller pre-fetch FIFO. As designed, the USB core

was supposed to have the FIFO functioning with unregistered outputs. In other words, as

soon as the first byte is stored in the FIFO, it appears on the output pins, i.e. it did not

require a positive edge of the read clock for the data to appear on the output. The default

setting of the library function, however, set the FIFO to function in the registered mode,

i.e., when the first byte is entered into the FIFO, it appears on the output lines only after

the rising edge of the read clock. It was due to this reason, an additional 0-byte was being

appended to the reply to the PC. Setting the FIFO to function with unregistered outputs

then solved the problem. Apart from this there was no other problem with the USB core

as it was implemented.

78

7.3 INTERFACE TESTING AND VERIFICATION

The only problem encountered while designing the interface what that of clock jitter.

The DCLK and TCLK used by the block chip were derived from the main 48MHz clock.

The main clock was observed to jitter, when viewed on a logic analyzer. This jitter was

hence also induced in the DCLK and TCLK. The source of the problem on the derived

clocks and a solution is presented below. The problem is shown in figure 7.4.

Figure 7.4. Clock Skew.

To better control and transmit DCLK and TCLK, a faster clock called FCLK was

implemented. The DCLK was initially derived from the 48MHz clock using a counter.

One cycle of the 48MHz clock is 20.83ns long. The block chip specification lists certain

minimum setup time for the DIN line. To comply with the requirements the DCLK

frequency was chosen to be 2.5MHz, with one cycle 0.4  s long. This means that there

are
ns

s

83.20

4.0 
 = 19.2 20 main clock cycles in each DCLK cycle. Even though there

are 20 cycles in each DCLK cycle, we only need 10 cycle counts because DCLK is high

or low for only 10 of these cycles, and one period consists of 20 cycles. To count 10 main

clock cycles a 4-bit counter is required. Initially, DCLK is logic low and it remains low

for the first 10 increments of the counter. At the next step, DCLK’s state is changed to

logic high and the counter is reset to 0. The counter again counts to 10 and then DCLK is

set to 0. The source of the problem is shown in figure 7.5.

79

CLK

Figure 7.5. 48MHz clock with DCLK half-cycle timing.

Due to the jitter, each clock cycle, can be either more or less than 20.83 ns. We can

assume for simplicity in describing the problem that because of a low resolution of

measurement, each cycle of the main clock can be shorter or longer than 20.82 ns by

about +/- ts. Hence in figure above, the ten clock cycles on a worse case scenario, can be

0.208322 + (10 * tclk) or 0.208332 – (10 * tclk). This means that DCLK can change state

from either a 0 or a 1, in the range stated above. This high difference in jitter will cause

the DCLK to also jitter at a high rate. To solve the problem a 5MHz FCLK was derived

from the main clock. Each cycle of FCLK will then be 0.2  s long. Each FCLK cycle

will have
ns

s

83.20

2.0 
 = 9.6 10 main clock cycles. To generate FCLK, a 3-bit counter is

required. For the first 5 counts, FCLK will remain at logic 0; the counter will then be

reset to 0. For the next 5 counts FCLK will be set at logic high. Assuming the same rate

of jitter on each clock cycle, we can calculate the new range the FCLK will jitter in.

According to figure 7.6 the range will be, 0.104166 + (5 * tclk) to 0.104166 – (5 * tclk).

Since the total skew of 5 clock cycles is less than the skew of 10 clock cycles, the jitter of

FCLK is less than that of the main clock cycle. DCLK is derived from FCLK and not the

main clock to further reduce the jitter. Since FCLK is twice as fast as DCLK, there are

two FCLK cycles per DCLK cycle.

80

0.208332 
s

1 2 3 4 5

0.104166 s

1 2 3 4 5 6 7 8 9 10

Figure 7.6. 48MHz clock with FCLK half-cycle timing.

The DCLK jitter in the first case is +/- 10* tclk. Using the FCLK to derive the DCLK

reduces this jitter. FCLK jitters in the range of +/- 5 * tclk. Since DCLK is based on

FCLK, its jitter is also reduced to +/- 5 * tclk, in other words, it was reduced by half. When

noticed on a logic analyzer, the jitter on DCLK was not noticeable.

Figure 7.7. FCLK and DCLK.

81

1 2 3 4

0.8332 s

CHAPTER 8

ASIC DESIGN FLOW

After the successful implementation, verification and validation of the interfaces and

the USB core in FPGA, the designs were prepared for fabrication in ASIC. This chapter

describes the process of preparing a proven design for layout. There are three distinct

steps in the process and are described in the following sections. The first step is synthesis

that converts Verilog logic code to a transistor level circuit. The second step converts the

transistor level circuit to a layout while conforming to a particular technology library.

The third step consists of performing design rule- and layout vs. schematic-checks. This

step guarantees that the layout generated is functionally, and electrically equal to the

transistor level schematic of the design.

8.1 SYSNTHESIS

This step converts the verilog source into its transistor level circuit. The software used

to perform synthesis on the USB and interface cores was a widely used Synopsys design

compiler. Figure 8.1 shows the steps required to convert a verilog project into its

equivalent transistor level circuit.

The project information is first entered into the compile.scr file, which is a setup file

for the synopsys design compiler. The information entered in the setup file includes;

verilog design files, top level module, output files, etc. The dc_shell command is invoked

to start the synthesis process on the design files. The screen output is written to a text file

to conveniently analyze the results of the synthesis operation. The output of the synthesis

operation is the creation of the .lsi file.

82

Figure 8.1. Synopsys compilation steps.

8.2 LAYOUT

The L-Edit software was used to layout the USB and interface cores. However, before

L-Edit can perform layout, the source file provided to it should be in a proper format.

Hence, the .lsi file obtained in the previous step is converted into the .tpr format to be

readable by L-Edit. This process is depicted in figure 8.2.

Figure 8.2. LSI to TPR conversion.

Once a tpr file is obtained, L-Edit is commanded to use that file as its input for

creating the layout of the complete chip. Once the layouts of the three chips was

obtained, the two interface cores were combined with a USB core, and the transceiver

core to create the USB-blockchip and USB-Neurotalk chips. These two layouts are

shown in figure 8.3 and 8.4.

83

compile.scr

top_level.lsi

Includes:
Project files.
Compile settings.
Output file extension.

dc_shell –f compile.scr > usb.txt

core.txt

Output files

top_level.lsi

top_level.tpr

TPR
conversio

n

Figure 8.3. USB-Blockchip Core.

84

Pin 1

Blockchip
Interface

USB Core

USB 1.1 TransceiverTest Pads

Figure 8.4. USB-Neurotalk Core.

8.3 DRC & LVS CHECKS

Once the complete cores were done, design rule and layout verses schematic checks

needed to be done to ensure that the synthesized cores were translated into their

respective circuit level representations without any errors. In other words, the layout

process, and the process of connecting the three layouts, should not induce any errors.

DRC is a function built into the L-Edit software and did not report any errors in the

design rules that were used. The LVS process is a little involved and is shown in figure

85

Pin 1

Neurotalk
Interface

USB Core

USB 1.1 TransceiverTest Pads

8.5. L-Edit is used to extract the transistor level circuit netlist from the layout itself. This

process creates an .spc file. In addition to the two complete cores, the three sub-

components of each core were also used to generate separate spc files. The sub-

component spc files are then used by ORCAD software to create a transistor level circuit.

These circuits are then converted into blocks and connected the same way, as in the final

layout, using ORCAD. Once the transistor level circuit for the USB-blockchip and the

USB-neurotalk interfaces are obtained, each of these is extracted into a top-level netlist

that contains not only the USB circuit, but also the interface and transceiver circuit. Once

the top-level transistor level circuit netlist is obtained, it is compared to the transistor

level netlist extracted from the layout, using a L-Edit software utility called LVS. If the

two files match, it means that the interconnection of the three cores, in layout, i.e., USB,

interface and transceiver match perfectly with the ORCAD circuit level netlist. Doing

such a check increases the confidence level in the layout interconnections, as the

interconnections in ORCAD are easy to do and the errors are more easily detected.

Figures 8.6 and 8.7 show the ORCAD circuits for the USB-Blockchip and the USB-

Neurotalk chips. These circuits were used to extract a netlist, which was compared with

the layout netlist obtained by directly extracting the combined layout of the cores, shown

in figure 8.3 and 8.4. Figure 8.5 shows the entire LVS process.

86

Synopsys
design compiler

TPR file

Figure 8.5. LVS Flow Chart.

87

Extract Layout

USB-Blockchip
Layout

USB-Blockchip
Netlist

USB Layout Blockchip
Interface Layout

Txver Layout

USB
Netlist

Interface
Netlist

Txver
Netlist

USB-Blockchip
ORCAD Circuit

USB-Blockchip
ORCAD Netlist

LVS
(To check core
interconnects)

Comparison Results

Figure 8.6. USB-Blockchip ORCAD Circuit.

88

u1

USB_T op Le v el

D+ D-Lo
gic

Vd
d

Lo
gic

Gn
d

Vd d

Mo de

VP
O

VM
O/F

SE
O

OE
_

SUSPND

VP

VM

RCV

Sp
ee

d

0

Core _USB

Core _USB_ rk _ p in s

CL
K_

I

CR
C1

6_
ER

R

CTRL_I N_EMPTY

CTRL_I N_F UL L
CTRL_OUT _EMPT Y

CTRL_OUT _FULL

EP
1_

DO
UT

_0
_

EP
1_

DO
UT

_1
_

EP
1_

DO
UT

_2
_

EP
1_

DO
UT

_3
_

EP
1_

DO
UT

_4
_

EP
1_

DO
UT

_5
_

EP
1_

DO
UT

_6
_

EP
1_

DO
UT

_7
_

EP
1_

FU
LL

EP
1_

WE

PHY_T X_ MODE

RS
T_

I

RX_D
RX_DN
RX_DP
TX_OE
TX_DN
TX_DP

SO
F

TE
ST

CT
RL

TE
ST

DA
TA

_0
_

TE
ST

DA
TA

_1
_

TE
ST

DA
TA

_2
_

TE
ST

DA
TA

_3
_

TE
ST

DA
TA

_4
_

TE
ST

DA
TA

_5
_

TE
ST

DA
TA

_6
_

TE
ST

DA
TA

_7
_

TE
ST

SE
L_

2_
TE

ST
SE

L_
1_

TE
ST

SE
L_

0_

US
B_

BU
SY

US
B_

RS
T_

O

Vd d

Vs ub

x x x

Co re_ ep _rk _p i ns

CLK

DAT AREADY

DA
TA

_1
5_

DA
TA

_1
4_

DA
TA

_1
3_

DA
TA

_1
2_

DA
TA

_11
_

DA
TA

_1
0_

DA
TA

_9
_

DA
TA

_8
_

DA
TA

_7
_

DA
TA

_6
_

DA
TA

_5
_

DA
TA

_4
_

DA
TA

_3
_

DA
TA

_2
_

EP
1_

FU
NC

T_
WE

EP
1_

FU
NC

T_
DIN

_7
_

EP
1_

FU
NC

T_
DIN

_6
_

EP
1_

FU
NC

T_
DIN

_5
_

EP
1_

FU
NC

T_
DIN

_4
_

EP
1_

FU
NC

T_
DIN

_3
_

EP
1_

FU
NC

T_
DIN

_2
_

EP
1_

FU
NC

T_
DIN

_1
_

EP
1_

FU
NC

T_
DIN

_0
_

EP
1_

FU
LL

DCL K

DA
TA

_0
_

DA
TA

_1
_

FCLK

LE0

MAN_RST

OUTDATA

SEL ECT

SO
F

T CL K

US
B_

RS
T

Vdd

VSUB

pa d

Vdd

resLV

PAD_T 1

pa d

Vdd

resLV

PAD_T 2

pa d

Vdd

resLV

PAD_T 3

pa d

Vdd

resLV

PAD_T 4

pa d

Vdd

resLV

PAD_T 5

pa d

Vdd

resLV

PAD_T 6

pa d

Vdd

resLV

PAD_T 7

pa d

Vdd

resLV

PAD_T 8

pa d

Vdd

resLV

PAD_T 9

pa d

Vdd

resLV

PAD_T 10

pa d

Vdd

resLV

PAD_T 11

pa d

Vdd

resLV

PAD_T 12

pa d

Vdd

resLV

PAD_T 13

pa dVdd re s

LV

PAD_T1 4

p adVd d res

LV

PAD_T 15

p adVdd re s

LV

PAD_T1 6

pa dVd d res

LV

PAD_T1 7

pa dVd d res

LV

PAD_T 18

p adVd d res

LV

PAD_T1 9

p adVd d res

LV

PAD_T2 0

0

p adVdd re s

LV

PAD_T2 1

pa dVdd re s

LV

PAD_T2 2

p ad

Vdd

re s LV

PAD_T2 3

p ad

Vdd

re s LV

PAD_T2 4

p ad

Vdd

re s LV

PAD_T2 5

p ad

Vdd

re s LV

PAD_T2 6

p ad

Vdd

re s LV

PAD_T2 7

p ad

Vdd

re s LV

PAD_T2 8

p ad

Vdd

re s LV

PAD_T2 9

p ad

Vdd

re s LV

PAD_T3 0

in

Vdd

LV

PAD_T 31

in

Vdd

LV

PAD_T 32

in

Vdd

LV

PAD_T 33

in

Vdd

LV

PAD_T 34

in

Vdd

LV

PAD_T 35

in

Vdd

LV

PAD_T 36

in

Vdd

LV

PAD_T 37

in

Vdd

LV

PAD_T 38

in

Vdd

LV

PAD_T 39

in

Vdd

LV

PAD_T 40

inVdd

LV

PAD_T4 1

inVd d

LV

PAD_T 42

inVd d

LV

PAD_T 43

inVdd

LV

PAD_T4 4

in

Vdd

LV

PAD_T4 5

in

Vdd

LV

PAD_T4 6

in

Vdd

LV

PAD_T4 7

in

Vdd

LV

PAD_T4 8

in

Vdd

LV

PAD_T4 9

in

Vdd

LV

PAD_T5 0

in

Vdd

LV

PAD_T5 1

in

Vdd

LV

PAD_T5 2

in

Vdd

LV

PAD_T5 3

in

Vdd

LV

PAD_T5 4

in

Vdd

LV

PAD_T5 5

in

Vdd

LV

PAD_T5 6

in

Vdd

LV

PAD_T5 7

in

Vdd

LV
PAD_T5 8

in

Vdd

LV

PAD_T6 1

in Vd d

LV

DCL K

in Vd d

LV

Data [0]

in Vd d

LV

Data [1]

i n Vdd

LV

Da ta [2]

in Vdd

LV

Da ta [3]

in Vd d

LV

Data [4]

i n Vd d

LV

Data [5]

in Vd d

LV

Data [6]

i n Vd d

LV

Da ta [7]

in Vdd

LV

Da ta [8]

in Vdd

LV

Data [9]

i n Vd d

LV

Data [10]

in Vd d

LV

Data [11]

in Vd d

LV

Da ta [1 2]

in Vdd

LV

Da ta [1 3]

in Vdd

LV

Da ta[1 4]

i n Vd d

LV

Data [15]

Vdd

LV

PAD_T7 9
p ad _v d d_ s td

PAD_T 80

pa d_g nd _s td

pa d re s

HV

PAD_T8 1
p ad _flo a tl og i c _b are

pa d

HV

PAD_T8 2
p ad _fl o atl og i c _v fl_ po s

pa d

HV

PAD_T 83
pa d_f loa tl o gi c _v f l_n eg

p ad res

HV

PAD_T 84
pa d_f loa tlo g ic _ba re

x x x 1

in pu t

VDD
GND

x x x 2

inp u t

VDD
GND

x x x 3

in pu t

VDD
GND

x x x 4

in pu t

VDD
GND

x x x 5

in pu t

VDD
GND

x x x 7

in pu t

VDD
GND

x x x 6

in pu t

VDD
GND

x x x 8

in pu t

VDD
GND

x x x 10

in pu t

VDD
GND

x x x 9

inp u t

VDD
GND

Pin 1

Blockchip Interface

USB Core

Test Pads

USB 1.1 Transceiver

Figure 8.7. USB-Neurotalk ORCAD Circuit.

The schematics shown in figures 8.6 and 8.7 are too complex to be seen clearly. The

motivation for implementing the schematics was to ensure the correctness of the

interconnections when compared with the actual layout.

89

0

x x x 5

in pu t

VDD
GND

x x x 6

in pu t

VDD
GND

x x x 7

inp ut

VDD
GND

x x x 8

inp ut

VDD
GND

x x x 10

inp ut

VDD
GND

x x x 9

inp ut

VDD
GND

0

Co re_ USB

Co re_ USB_rk _p ins

CL
K_

I

CR
C1

6_
ER

R

CTRL_IN_EMPTY

CTRL_IN_FUL L
CTRL_ OUT_EMPTY

CTRL_ OUT_FUL L

EP
1_

DO
UT

_0
_

EP
1_

DO
UT

_1
_

EP
1_

DO
UT

_2
_

EP
1_

DO
UT

_3
_

EP
1_

DO
UT

_4
_

EP
1_

DO
UT

_5
_

EP
1_

DO
UT

_6
_

EP
1_

DO
UT

_7
_

EP
1_

FU
LL

EP
1_

WE

PHY_TX_MODE

RS
T_

I

RX_ D
RX_ DN
RX_ DP
TX_ OE
TX_ DN
TX_ DP

SO
F

TE
ST

CT
RL

TE
ST

DA
TA

_0
_

TE
ST

DA
TA

_1
_

TE
ST

DA
TA

_2
_

TE
ST

DA
TA

_3
_

TE
ST

DA
TA

_4
_

TE
ST

DA
TA

_5
_

TE
ST

DA
TA

_6
_

TE
ST

DA
TA

_7
_

TE
ST

SE
L_

2_
TE

ST
SE

L_
1_

TE
ST

SE
L_

0_

US
B_

BU
SY

US
B_

RS
T_

O

Vdd

Vs u b

u1

USB_Top Lev el

D+ D-Lo
gic

Vd
d

Lo
gic

Gn
d

Vdd

Mod e

VP
O

VM
O/F

SE
O

OE
_

SUSPND

VP

VM

RCV

Sp
ee

d

pa d

Vd d

resLV

PAD_T1

pa d

Vd d

resLV

PAD_T2

pa d

Vd d

resLV

PAD_T3

pa d

Vd d

resLV

PAD_T4

pa d

Vd d

resLV

PAD_T5

pa d

Vd d

resLV

PAD_T6

pa d

Vd d

resLV

PAD_T7

pa d

Vd d

resLV

PAD_T8

pa d

Vd d

resLV

PAD_T9

pa d

Vd d

resLV

PAD_T10

pa d

Vd d

resLV

PAD_T11

pa d

Vd d

resLV

PAD_T12

pa d

Vd d

resLV

PAD_T13

p adVdd re s

LV

PAD_T1 4

pa dVdd res

LV

PAD_T15

p adVd d res

LV

PAD_T16

p adVdd re s

LV

PAD_T1 7

pa dVdd re s

LV

PAD_T1 8

pa dVdd re s

LV

PAD_T 19

pa dVdd re s

LV

PAD_T2 0

pa dVdd re s

LV

PAD_T2 1

pa dVd d res

LV

PAD_T22

p ad

Vdd

re s LV

PAD_T2 3

p ad

Vdd

re s LV

PAD_T2 4

p ad

Vdd

re s LV

PAD_T2 5

p ad

Vdd

re s LV

PAD_T2 6

p ad

Vdd

re s LV

PAD_T2 7

0V

p ad

Vdd

re s LV

PAD_T2 8

p ad

Vdd

re s LV

PAD_T2 9

p ad

Vdd

re s LV

PAD_T3 0

in

Vd d

LV

PAD_T31

in

Vd d

LV

PAD_T32

in

Vd d

LV

PAD_T33

in

Vd d

LV

PAD_T34

in

Vd d

LV

PAD_T35

in

Vd d

LV

PAD_T36

in

Vd d

LV

PAD_T37

in

Vd d

LV

PAD_T38

in

Vd d

LV

PAD_T39

in

Vd d

LV

PAD_T40

inVdd

LV

PAD_T4 1

inVdd

LV

PAD_T4 2

inVd d

LV

PAD_T43

inVd d

LV

PAD_T4 4

in

Vdd

LV
PAD_T4 5

in

Vdd

LV

PAD_T4 6

in

Vdd

LV

PAD_T4 7

in

Vdd

LV

PAD_T4 8

in

Vdd

LV

PAD_T4 9

in

Vdd

LV

PAD_T5 0

in

Vdd

LV

PAD_T5 1

in

Vdd

LV

PAD_T5 2

in

Vdd

LV

PAD_T5 3

in

Vdd

LV

PAD_T5 4

in

Vdd

LV

PAD_T5 5

in

Vdd

LV

PAD_T5 6

in

Vdd

LV

PAD_T5 7

in

Vdd

LV

PAD_T5 8

in

Vdd

LV

PAD_T6 1

in Vdd

LV

FCLK

in Vd d

LV

DCL K

in Vd d

LV

SHF T_DAT[6]

in Vd d

LV

SHFT_DAT [5]

in Vd d

LV

SHFT_ DAT[4]

in Vdd

LV

SHFT_ DAT[3]

in Vdd

LV

SHFT_ DAT[2]

in Vdd

LV

SHFT_DAT[1]

in Vd d

LV

SHFT_DAT[0]

in Vd d

LV

Data [7]

in Vd d

LV

Da ta[6]

in Vdd

LV

Da ta[5]

in Vdd

LV

Da ta[4]

in Vdd

LV

Da ta[3]

in Vd d

LV

Data [2]

in Vd d

LV

Data [1]

in Vd d

LV

Data [0]

Vdd

LV

PAD_T79
pa d_v dd _s td

PAD_T8 0

p ad _gn d_ s td

p ad res

HV

PAD_T81
pa d_f loa tlog ic _ba re

p ad

HV

PAD_T 82
pa d_f loa tlog ic _v f l_p os

p ad

HV

PAD_T8 3
p ad _flo atl og i c _v fl_ ne g

p ad re s

HV

PAD_T8 4
p ad _flo atl og i c _b are

x x x

Co re_ neu ra l _rk _p ins

CL K

DA
TA

_7
_

DA
TA

_6
_

DA
TA

_5
_

DA
TA

_4
_

DA
TA

_3
_

DA
TA

_2
_

DA
TA

_1
_

DA
TA

_0
_

SH
IFT

_D
AT

A_
6_

SH
IFT

_D
AT

A_
5_

SH
IFT

_D
AT

A_
4_

SH
IFT

_D
AT

A_
3_

SH
IFT

_D
AT

A_
2_

SH
IFT

_D
AT

A_
1_

SH
IFT

_D
AT

A_
0_

EP
1_

FU
NC

T_
DIN

_7
_

EP
1_

FU
NC

T_
DIN

_6
_

EP
1_

FU
NC

T_
DIN

_5
_

EP
1_

FU
NC

T_
DIN

_4
_

EP
1_

FU
NC

T_
DIN

_3
_

EP
1_

FU
NC

T_
DIN

_2
_

EP
1_

FU
NC

T_
DIN

_1
_

EP
1_

FU
NC

T_
DIN

_0
_

EP
1_

FU
NC

T_
WE

EP
1_

US
_F

UL
L

MAN_RST

US
B_

RS
T

Vd d

VS
UB

DATAREADY

FCLK
MCLK

OUTDATA

SEL ECT

TAG

DCLK

x x x 1

in pu t

VDD
GND

x x x 2

in pu t

VDD
GND

x x x 3

inp ut

VDD
GND

x x x 4

inp ut

VDD
GND

0 V

Pin 1

Neurotalk Interface

USB Core

Test Pads

USB 1.1 Transceiver

CHAPTER 9

DISCUSSION OF ACHIEVED RESULTS

The USB device was initially tested and validated in FPGA using the board shown in

figure 6.8. A sample device driver and application provided with the Windows Device

Driver Development Kit, were used. The device driver was used without being modified,

however the application required minimal modification to send the correct instruction to

the device.

9.1 FPGA PROTOTYPE TEST RESULTS

The blockchip and the neurotalk implementations were successfully tested on the

FPGA prototype board. Figure 9.1 shows the signals on DCLK, DIN and LE. This figure

closely matches figure 3.3, which shows the output waveform as described in the block

chip specification document. Figure 9.2 shows a partial blockchip output waveform as it

appears on an oscilloscope. The figure shows the channel output along with the DIN,

DATA and LE signals. Figure 9.3 shows the complete blockchip output waveform at

channel 1. The data the application sent to the USB was sent in decimal format. The 4-

byte data integer was (41,503)10 = (00 00 A2 1F)16. In binary this number is (0000 0000

0000 0000 1010 0010 0001 1111)2. Since the USB outputs data in a little-endian format.

The data that reaches the endpoint is as follows: 1st byte = 0000 1111, 2nd byte = 1010

0010. Hence the data received by the endpoint in binary is: (0001 1111 1010 0010)2. The

data transmitted translates into the waveform attributes shown in figure 9.1.

90

Figure 9.1. Blockchip Instruction Attributes.

Each pulse width increment starting with T3T2T1T0 = 0001 is in 53.33 us

increments. Since T3T2T1T0 = 1000 the 8th increment after T3T2T1T0 = 0001, the pulse

width is 53.33 us * 8 = 426.64 us. This number can be verified by looking at figure 9.4.

Since the voltage obtained is the open circuit voltage across the channel, i.e. it is not

loaded, the signal hits the compliance voltage, hence the amplitude cannot be verified.

However the fact that the pulse width is as expected we can safely assume that the system

is works correctly. The pulse polarity is ‘1’, which means the output waveform will be

anodic first.

91

 0 0 0 1 1 1 1 1 1 0 1 0 0 0 1 0

AD2 AD1 AD0 A6 A5 A4 A3 A2 A1 A0 T3 T2 T1 T0 P H

AD2 = 0
AD1 = 0 Channel 1
AD0 = 0

A6 = 1
A5 = 1
A4 = 1
A3 = 1 Amplitude
A2 = 1
A1 = 1
A0 = 0

T3 = 1
T2 = 0 Pulse width = 426.64 us
T1 = 0
T0 = 0

P = 1 (Anodic phase first)

H = 0 (No Holdoff)

Figure 9.2. Oscilloscope Screenshot of Blockchip Signals.

Figure 9.3. A Partial Oscilloscope Screenshot of Blockchip Channel Output.

92

0 0 0 1 1 1 1 1 1 0 1 0 0 0 1 0

16-bit Serial Data Stream

LE setup time

Serial Data Stream

LE

Partial Bi-phasic Waveform

Figure 9.4. A Complete Oscilloscope Screenshot of Blockchip Channel Output.

The neurotalk version of the device was similar to that of the block chip design. The

difference between them lies in the different number and kinds of signals. The neurotalk

interface requires three signals: serial data output (ODATA), data clock (DCLK) and

reset (TAG). Before starting any transmission, a pulse needs to be generated on the TAG

signal to reset the neurotalk target device. The data output available at the first rising

edge of the DCLK, after the TAG goes low, is considered valid. In addition, the most

significant bit of each byte in the instruction is reserved for purposes discussed below.

Figure 9.3 shows the signal lines for the neurotalk version of the device and a close up of

the instruction as it is written to the endpoint FIFO.

93

Serial Data Stream

LE

Complete Bi-
phasic Waveform

Figure 9.5. Closeup of Neurotalk Output Signals.

The data that is sent to the neurotalk interface is a 4-byte data packet as shown in

figure 9.3. In binary, the data translates to: 1010 1010 0101 0101 0101 0101 0101 0101.

Since the 7th bit of each byte is reserved, it is not counted in the instruction stream. The

instruction stream is: 010 1010 101 0101 101 0101 101 0101. The signal output obtained

from the stream is shown in figure 9.6. Figure 9.7 shows the complete output of the

neurotalk interface state machine. It shows the TAG signal, the data output signal and the

data clock. I can be verified visually that the data output stream of figure 9.7 matches

with that of figure 9.6.

94

AA 55 55 55

0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1

Figure 9.6. Neurotalk Data Stream.

Figure 9.7. Neurotalk Output Signals.

 A start-of-frame (SOF) signal was also implemented. It is designed to output a short

pulse and is an output from the USB core FPGA. While writing the specification for the

neurotalk interface logic, it was discovered that there was a need for the neurotalk

compatible external chip to be apprised of a start of data frame. The USB core sets a bus

to endpoint 1 before starting to send data to the endpoint. This bus was used to determine

the exact timing of the SOF signal. It was soon discovered that using the SOF would lead

to another potential problem. This problem surfaces if immediately after the very first

instruction, another instruction is sent, the new instruction does not have a SOF signal

95

TAG
asserted Output

Data

DCLK

preceding it. In an ideal condition this would pose no problem. However, if any one byte

were to be missed, due to a missing write enable, the wrong instruction would be read in,

and the state machine will not be synchronous with the USB core. To solve this problem,

the instruction format was redesigned in such a way that the most significant bit of the

first byte will always be a logic ‘1’. All subsequent bytes of that particular instruction

will have a logic ‘0’ as the most significant bit. Such an addition would make the

interface synchronous with the USB core at every instruction. Figure 9.8 shows the SOF

signal. The data packet closely follows the SOF pulse as shown.

Figure 9.8. Implementation of the SOF.

96

SOF Signal

Data write
enables

CHAPTER 10

DISCUSSION

The initially specified goals of the project have been successfully achieved. This

chapter discusses the overall project, including the problems that were faced during the

implementation, and recommendations for future improvements in the design and

hardware implementation.

10.1 USB DEVICE IMPLEMENTATION

As stated in chapter 6 and 8 the prototype FPGA device was implemented without

using PCB’s. Figure 7.1 shows the bottom view of the device. It can be easily seen that

the manual connections are complex and hence prone to loose connections. Such a

problem was frequently faced while building and debugging the design. Often, while the

device was working, one of the FPGA’s would lose its configuration and would have to

be programmed again. The other problem that was faced was validating the USB core

that was obtained as an open source implementation. Since it did not have

documentation, it took a considerable amount of time to configure and debug.

The software used for the device is the application that was supplied by the Windows

Driver Development kit. It is written in C and requires a driver build environment. The

driver is a generic version that is compatible with devices that support only bulk

transfers. Although the driver works, it has not been optimized for use with any one

specific device.

10.2 RECOMMENDATIONS

The FPGA development board that was designed required extensive soldering to

function correctly. Over time due to the use of the device, the solder connections degrade

97

and either need to be re-done, or the connecting wires need to be replaced. To avoid such

extensive maintenance and replacement, the device could be implemented as a PCB.

Using a PCB however could create other problems. For instance, making a change to a

PCB is more difficult compared to making a change in the manually constructed device.

To overcome such a disadvantage, each major component can be soldered to it own PCB.

The individual components can then be interconnected using connectors and can be made

to connect any pin on one FPGA to any pin on other devices. Such a PCB system is

shown in figure 10.1.

Figure 10.1. Proposed PCB based Development System.

Such a system will make sure that FPGA’s don’t lose configuration due to bad

connections. It will enable quick re-configuration of the pin connections, provided the

correct type of connector is used to connect the two PCB’s.

In addition to the above-mentioned changes, the device driver used for the

development board can be optimized more by implementing it at a lower level in the

operating system stack. The application currently is executed using a command line

console provided along with the windows driver development kit, and can be improved

by adding a graphical user interface for better user interaction and control of the output

waveform attributes.

98

FPGA FPGA

Interconnections

PCB 1 PCB 2

10.3 TEST RESULTS

During the implementation and testing of the device a number of problems were

faced. Due to the absence of accompanying documentation for USB core it was time

consuming to get the device to work. In addition, due to insufficient FPGA software

support an error was induced in the FIFO implementation of the USB core. This error

caused the enumeration of the device to fail. It was discovered that the FIFO outputs are

required to be unregistered to function as expected. The other problem faced was with the

main 48MHz and the internal clocks. This problem caused the internal logic to sometimes

behave erratically thereby giving an inconsistent output. It was discovered that the main

clock was skewed which also skewed its derivative clocks. Generating reduced frequency

clocks in small steps solved the problem. Instead of generating the 2.4 MHz DCLK

directly from the 48MHz main clk, an intermediate 4.8MHz FCLK was derived and then

the DCLK was derived from the FCLK. This reduced the jitter noticeably and improved

the performance of the interface logic.

Subsequent to solving the problems, the FPGA development board was validated and

verified for the application of interfacing with the blockchip and the proposed neurotalk

chips. The ASIC implementation of the two interfaces has been implemented and is

currently being tested. In addition to the ASIC version, the FPGA based development

board in itself can be used effectively as a stimulator system after the development of the

device driver and application optimized for this application.

99

CHAPTER 11

CONCLUSION

The USB device was successfully implemented and tested in FPGA in spite of facing

problems. The USB, hence appears to be a good solution for use as a link between the PC

and the two microchips: Blockchip and Neurotalk. To be successfully used as a

neuroprosthetic stimulator system, the complete systems needs to be implemented and

tested in ASIC. In addition, the device driver needs to be optimized and the application

needs to be modified to add a graphical user interface.

The system was implemented manually using a copper clad perforated board. This

required that the connections be made using wire. Doing so provided the flexibility to

change the connections as needed, however it turned out to be tedious to design and

debug. The problem of degrading solder connections was also faced in a later stage of

development. To overcome these problems, implementation in PCB is suggested for

future implementation. Each electronic component soldered on a separate PCB gives a

reliable connection, while letting the designer to be flexible enough to make changes

100

easily and reliably. The system has been implemented in ASIC and is currently being

tested.

APPENDIX A

BLOCKCHIP INTERFACE VERILOG RTL CODE

101

`include "usb1_tech.v"
module usb1_interface(clk, //input

 usb_rst, //input
 clr, //input
 man_rst, //input
 ep1_funct_din, // input
 ep1_funct_re, // output
 ep1_we,
 ep1_funct_full,//input
 ep1_funct_empty,//input
 Dclk, //output
 Tclk, //output
 Fclk, //output
 LE0, //output
 outData, //output
 select,
 dataready,
 Data,
 sof);//output

// ~~
// ENDPOINT 1: BULK, OUT

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// This data bus inputs data from the FIFO to the device function.
// It is then used by the function. This is used by endpoint 1
input [7:0] ep1_funct_din;
wire [7:0] ep1_funct_din;
// This is the read enable signal the goes into the FIFO.
output ep1_funct_re;
wire ep1_funct_re;
// This input comes in from the FIFO, it tells the device
// whether or not the FIFO is empty.
input ep1_funct_empty;
wire ep1_funct_empty;
input ep1_funct_full;
wire ep1_funct_full;
output LE0;
output Dclk;
output Tclk;
output Fclk;
wire LE0, Dclk, Tclk, Fclk;
output [15:0] Data;

102



wire [15:0] Data;
output dataready;
output select;

output outData;
wire outData;

input ep1_we;
wire ep1_we;

input clk, usb_rst, clr;// usb_rst coming from the USB core
wire clk, usb_rst, clr;

input man_rst; // man_rst coming from outside the FPGA

input sof;
wire sof;

reg [7:0] reg5;
//reg re;
reg LE0;
reg select;
//reg ff_enable;
reg enable_le;
reg shift;
reg sft_count;

reg ep1_funct_re;
//wire ep1_funct_re;

reg sr_dataready;

reg dataready;

reg [15:0] Data;
reg [15:0] bitfield;

reg [3:0] count1;
reg [3:0] count2;
reg [3:0] count3;

reg [8:0] shift_count;
reg Dclk, Tclk, Fclk;

103



//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// CLOCKS required by the block chips.
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

// Dclk at 2.5MHz = 
always @(negedge Fclk)
begin

if(!usb_rst) begin
Dclk <=1'b0;
count1 <= 4'd0;

end
else if (!man_rst) begin

Dclk <= 1'b0;
count1 <= 4'd0;

end
else if(count1 == 4'd1 && Dclk == 1'b0 && usb_rst == 1'b1 && man_rst ==

1'b1) begin
Dclk <= 1'b1;
count1 <= 4'd1;

end
else if(count1 == 4'd1 && Dclk == 1'b1 && usb_rst == 1'b1 && man_rst ==

1'b1) begin
Dclk <= 1'b0;
count1 <= 4'd1;

end else count1 <= count1 + 4'd1;
end

// Fclk = 5MHz
always @(posedge clk)
begin

if(!usb_rst) begin
Fclk <= 1'b0;
count3 <= 4'd0;

end
else if(!man_rst) begin

Fclk <= 1'b0;
count3 <= 4'd0;

end
else if(count3 == 5 && Fclk == 1'b0 && usb_rst == 1'b1 && man_rst == 1'b1)

begin
Fclk <= 1'b1;
count3 <= 4'd1;

end
else if(count3 == 5 && Fclk == 1'b1 && usb_rst == 1'b1 && man_rst == 1'b1)

begin
Fclk <= 1'b0;
count3 <= 4'd1;

end
else count3 <= count3 + 4'd1;

end

104



// Tclk at 312500Hz
always @(posedge Dclk)
begin

if(!usb_rst) begin
Tclk <= 1'b0;
count2 <= 4'd0;

end
else if(!man_rst) begin

Tclk <= 1'b0;
count2 <= 4'd0;

end
else if(count2 == 4'd4 && Tclk == 1'b0 && usb_rst == 1'b1 && man_rst ==

1'b1) begin
Tclk <= 1'b1;
count2 <= 4'd1;

end
else if(count2 == 4'd4 && Tclk == 1'b1 && usb_rst == 1'b1 && man_rst ==

1'b1) begin
Tclk <= 1'b0;
count2 <= 4'd1;

end else count2 <= count2 + 4'd1;
end
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Read from FIFO
//~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

reg [7:0] temp;
reg [3:0] count_re;

reg ep1_we1, ep1_we2;

always @(posedge clk)
ep1_we1 <= ep1_we;

always @(posedge clk)
ep1_we2 <= ep1_we1;

///////////////////////////////////////////////
// Start reading from the OUT FIFO
///////////////////////////////////////////////

always @(posedge clk)
begin

if(!usb_rst) begin
count_re <= 4'd0;

end
if(sof) count_re <= 4'd0;

105



if(ep1_we2 & count_re < 4'd8) begin
if(count_re == 4'd0) begin

ep1_funct_re <= 1'b1;
Data[15:8] <= ep1_funct_din;
dataready <= 1'b0;
count_re <= 4'd1;

end
if(count_re == 4'd1) begin

ep1_funct_re <= 1'b1;
Data[7:0] <= ep1_funct_din;
dataready <= 1'b1;
count_re <= 4'd2;

end
if(count_re == 4'd2) begin

ep1_funct_re <= 1'b1;
bitfield[15:8] <= ep1_funct_din;
dataready <= 1'b1;
count_re <= 4'd3;

end
if(count_re == 4'd3) begin

ep1_funct_re <= 1'b1;
bitfield[7:0] <= ep1_funct_din;
dataready <= 1'b1;
count_re <= 4'd4;

end
if(count_re == 4'd4) begin

ep1_funct_re <= 1'b1;
temp <= ep1_funct_din;
dataready <= 1'b1;
count_re <= 4'd5;

end
if(count_re == 4'd5) begin

ep1_funct_re <= 1'b1;
temp <= ep1_funct_din;
dataready <= 1'b1;
count_re <= 4'd6;

end
if(count_re == 4'd6) begin

ep1_funct_re <= 1'b1;
temp <= ep1_funct_din;
dataready <= 1'b1;
count_re <= 4'd7;

end
if(count_re == 4'd7) begin

ep1_funct_re <= 1'b1;
temp <= ep1_funct_din;
dataready <= 1'b0;
count_re <= 4'd0;

end
end

106



else if(ep1_we2 == 1'b0) begin
ep1_funct_re <= 1'b0;
if(dataready == 1'b0) dataready <= 1'b0;
else if(dataready == 1'b1) dataready <= 1'b1;

end
end
//

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Shift out data for 16 Dclk cycles
//

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
always @(posedge Fclk) begin

if(!usb_rst) begin
shift_count <= 6'd0;
sr_dataready <= 1'b0;
select <= 1'b1;
sft_count <= 1'b1;
LE0 <= 1'b0;

end
else if(!man_rst) begin

shift_count <= 6'd0;
sr_dataready <= 1'b0;
select <= 1'b1;
sft_count <= 1'b1;
LE0 <= 1'b0;

end

if(sr_dataready == 1'b0)
shift_count <= 6'd0;

if(sr_dataready == 1'b1 & shift_count == 6'd0 & Dclk == 1'b0) begin
shift_count <= 6'd1;
select <= 1'b1;
LE0 <= 1'b0;

end
else if(sr_dataready == 1'b1 & shift_count == 6'd0 & Dclk == 1'b1) begin

shift_count <= 1'b0;
select <= 1'b0;
LE0 <= 1'b0;

end
else if(sr_dataready == 1'b1 & shift_count <6'd38) shift_count <= shift_count +

6'd1;

if (dataready == 1'b1 & shift_count == 6'd0) begin
sr_dataready <= 1'b1;

end
else if (dataready == 1'b0 & shift_count == 6'd36) begin //691

sr_dataready <= 1'b0;

107



sft_count <= 1'd0;
select <= 1'b1;

end

if(sr_dataready == 1'b1 & shift_count == 6'd1) begin
select <= 1'b1;
LE0 <= 1'b0;

end

if(sr_dataready == 1'b1 & shift_count == 6'd2 & Dclk == 1'b0) begin
select <= 1'b0;
LE0 <= 1'b0;

end

if(sr_dataready == 1'b1 & shift_count == 6'd3) begin
select <= 1'b0;
LE0 <= 1'b0;

end

if(sr_dataready == 1'b1 & shift_count > 6'd3 & shift_count < 6'd34) begin
select <= 1'b0;
LE0 <= 1'b0;

end

if(sr_dataready == 1'b1 & shift_count == 6'd33 & Dclk == 1'b1) begin
select <= 1'b1;
LE0 <= 1'b1;

end

if(sr_dataready == 1'b1 & shift_count == 6'd34) begin
select <= 1'b1;
LE0 <= 1'b0;

end
end

//
===============================================================
====

// Synthesize in FPGA
//

===============================================================
====

`ifdef FPGA
lpm_shiftreg shft_reg(.data(Data),

 .clock(!Dclk),
 .enable(enable),

108



 .load(select),
 .shiftout(outData));

defparam shft_reg.lpm_width = 16;
//

===============================================================
====

//
===============================================================
====

// Synthesize in ASIC
//

===============================================================
====

`else `ifdef ASIC

mux21 mux0(.in1(Data[0]), .in0(1'b0), .sel(select), .out(dff_0_i));
dff_i df0(.data(dff_0_i), .q(dff_0_o), .clock(!Dclk), .enable(1'b1));

mux21 mux1(.in1(Data[1]), .in0(dff_0_o ), .sel(select), .out(dff_1_i));
dff_i df1(.data(dff_1_i), .q(dff_1_o), .clock(!Dclk), .enable(1'b1));

mux21 mux2(.in1(Data[2]), .in0(dff_1_o), .sel(select), .out(dff_2_i));
dff_i df2(.data(dff_2_i), .q(dff_2_o), .clock(!Dclk), .enable(1'b1));

mux21 mux3(.in1(Data[3]), .in0(dff_2_o), .sel(select), .out(dff_3_i));
dff_i df3(.data(dff_3_i), .q(dff_3_o), .clock(!Dclk), .enable(1'b1));

mux21 mux4(.in1(Data[4]), .in0(dff_3_o), .sel(select), .out(dff_4_i));
dff_i df4(.data(dff_4_i), .q(dff_4_o), .clock(!Dclk), .enable(1'b1));

mux21 mux5(.in1(Data[5]), .in0(dff_4_o), .sel(select), .out(dff_5_i));
dff_i df5(.data(dff_5_i), .q(dff_5_o), .clock(!Dclk), .enable(1'b1));

mux21 mux6(.in1(Data[6]), .in0(dff_5_o), .sel(select), .out(dff_6_i));
dff_i df6(.data(dff_6_i), .q(dff_6_o), .clock(!Dclk), .enable(1'b1));

mux21 mux7(.in1(Data[7]), .in0(dff_6_o), .sel(select), .out(dff_7_i));
dff_i df7(.data(dff_7_i), .q(dff_7_o), .clock(!Dclk), .enable(1'b1));

mux21 mux8(.in1(Data[8]), .in0(dff_7_o), .sel(select), .out(dff_8_i));
dff_i df8(.data(dff_8_i), .q(dff_8_o), .clock(!Dclk), .enable(1'b1));

mux21 mux9(.in1(Data[9]), .in0(dff_8_o), .sel(select), .out(dff_9_i));
dff_i df9(.data(dff_9_i), .q(dff_9_o), .clock(!Dclk), .enable(1'b1));

mux21 mux10(.in1(Data[10]), .in0(dff_9_o), .sel(select), .out(dff_10_i));
dff_i df10(.data(dff_10_i), .q(dff_10_o), .clock(!Dclk), .enable(1'b1));

mux21 mux11(.in1(Data[11]), .in0(dff_10_o), .sel(select), .out(dff_11_i));
dff_i df11(.data(dff_11_i), .q(dff_11_o), .clock(!Dclk), .enable(1'b1));

109



mux21 mux12(.in1(Data[12]), .in0(dff_11_o), .sel(select), .out(dff_12_i));
dff_i df12(.data(dff_12_i), .q(dff_12_o), .clock(!Dclk), .enable(1'b1));

mux21 mux13(.in1(Data[13]), .in0(dff_12_o), .sel(select), .out(dff_13_i));
dff_i df13(.data(dff_13_i), .q(dff_13_o), .clock(!Dclk), .enable(1'b1));

mux21 mux14(.in1(Data[14]), .in0(dff_13_o), .sel(select), .out(dff_14_i));
dff_i df14(.data(dff_14_i), .q(dff_14_o), .clock(!Dclk), .enable(1'b1));

mux21 mux15(.in1(Data[15]), .in0(dff_14_o), .sel(select), .out(dff_15_i));
dff_i df15(.data(dff_15_i), .q(outData), .clock(!Dclk), .enable(1'b1));

`endif // ASIC
`endif // FPGA
//

===============================================================
====

endmodule

BIBLIOGRAPHY

[1]  Akin T., Najafi K., Bradley R.M. A Wireless Implantable Multichannel Digital
      Neural Recording System for a Micromachined Sieve Electrode. IEEE Journal of
      Solid-State Circuits, January 1998.

[2]  Ben-Haim S. A., Anuchink C.L., Dinnar U. A Computer Controller for Vest  
      Cardiopulmonary Resuscitation (CPR). IEEE Transactions on BME, May 1988.

[3]  Broberg R., Hubbard A. A Custom-Chip Based Functional Electrical Stimulation 
 System. IEEE Transactions on BME, September 1994.

[4] Buckett J.R., Peckham P. H., Thrope G. B., Braswell S. D., Keith M. W. A flexible,  
      Portable System for Neuromuscular Stimulation in the Paralyzed Upper Extremity.  
      IEEE Transactions on BME, November 1988.

[5] Capelle C., Trullemans C., Arno P., Veraart C. A Real-Time Experimental Prototype 
      for Enhancement of Vision Rehabilitation using Auditory Substitution. IEEE 
      transactions on BME, October 1998

[6]  Cheever E.A., Thompson D.R., Cmolik B.L., Santamore W.P., George D.T. A 
       Versatile Microprocessor-Based Multichannel Stimulator for Skeletal Muscle   
       Cardiac Assist. IEEE Transactions on BME, January 1998

[7]   Connor S.B., Quill T.J., Jacobs J.R. Accuracy of Drug Infusion Pumps Under 
       Computer Control. IEEE Transactions on BME, September 1992

[8]   Hartov A., Mazzarese R.A., Reiss F.R., Kerner T.E., Osterman S., Williams D.B., 

110



       Paulsen K.D. A Multichannel Continuously Selectable Multifrequency Electrical 
       Impedance Spectroscopy Measurement System. IEEE Transactions on BME, January
       2000.

[9]   Hinterberger T., Schmidt S., Neumann N., Mellinger J., Blankertz B., Curio G., 
       Birbaumer N. Brain-Computer Communication and slow cortical Potentials. IEEE   
       Transactions on BME, June 2004.

[10] Ignagni A.R., Buckett J. R., Peckham P.H. A Programming and Data Retrieval 
       System for an Upper Extremity FES Neuroprosthesis. Annual International  
       Conference of the IEEE Engineering in Medicine and Biology Society, 1990
     
[11] Kaczmarek K.A., Kramer K.M., Webster J.G., Radwin R.G. A 16-channel 8- 
       Parameter Waveform Electrotractile Stimulation System. IEEE Transactions on  
       BME, October 1991.

[12]  Kanhai J.K.K., Caspers P.J., Reinders E.G.J., Pompe J.C., Bruining H.A., Puppels 
        G.J. A Fast digitally Controlled Flow Proportional Gas Injection System for Studies 
        in Lung Function. IEEE Transactions on BME, November 2003.

[13]   Krief B., Dye R., Tucker J.H., Brugal g., Chassery J.M. A New Approach to Man 
         Machine Communication for Computerized Microscopy. IEEE Transactions on 
         BME, March 1994

[14]   Lawrence T.L., Schmidt R.N. Wireless In-Shoe Force System. IEEE-EMBS 
         International Conference Proceedings, Oct-Nov 1997

[15]   Mesic S., Babuska R., Hoogsteden H.C., Verbraak A.F.M. Computer Controlled 
         Mechanical Stimulation of the Artificially Ventilated human Respiratory System. 
         IEEE Transactions on BME, June 2003.

[16]  Morris L. R, Barszczewski P. Algorithms, Hardware, and Software for a Digital 
        Signal Processor Microcomputer-Based Speech Processor in a Multielectrode 
        Cochlear Implant System. IEEE Transactions on BME, June 1989.

[17]   Muller G.R., Neuper C., Pfurtscheller G. Implementation of a Telemonitoring 
         System for the Control of an EEG-Based Brain-Computer Interface. IEEE 
         Transactions on Neural Systems and Rehabilitation Engineering, March 2003

[18]   Polak M., Kostov A. Development of Brain-Computer Interface: Preliminary 
         Results. IEEE-EMBS International Conference Proceedings, Oct-Nov 1997

[19]   Rollins D.L., Killingsworth C.R., Walcott G.P, Justice R.K., Ideker R.E., Smith 
         W.M. A Telemetry System for the Study of Spontaneous Cardiac Arrhythmias. 
         IEEE Transactions on BME, July 2000

[20]   Sawan M., Duval F., Hassouna M.M., Li J., Elhilali M.M, Lachance J., Leclair M., 
         Pourmehdi S., Mouine J.  Computerized Trancutaneous Control of a Multichannel 
         Implantable Urinary Prosthesis. IEEE Transactions on BME, June 1992

[21]   Schalk G., McFarland D.J., Hinterberger T., Birbaumer N., Wolpaw J.R. BCI2000: 

111



         A general purpose Brain-Computer Interface System. IEEE Transactions on BME, 
         June 2004

[22]   Schuessler T.F., Bates J.H.T. A Computer-Controlled Research Ventilator for small
         Animals: Design and Evaluation. IEEE Transactions on BME, September 1995

[23]   Suaning G.J., Lovell N.H. CMOS Neurostimulation ASIC with 100 channels, 
         Scalable Output, and Bidirectional Radio-Frequency Telemetry. IEEE Transactions 
         on Biomedical Engineering, February 2001

[24]   Zeng S., Powers J.R., Hsiao H.  A New Video-Synchronized Multichannel 
         Biomedical Data Acquisition System. IEEE Transactions on BME, March 2000

[25]   Zhu H., Harris G.F., Wertsch J.J., Tompkins W.J., Webster J.G. A Microprocessor-
     Based Data-Acquisition System for Measuring Plantar Pressure from Ambulatory 
     Subjects. IEEE Transactions on BME, July 1991

112


	Acknowledgement
	Table of ContentS
	List of Tables
	List of Figures
	Introduction
	1.1 neuroprosthetic system functionality
	1.2 PC Communication Links

	Review of prevelant communication links
	2.1 Overview of various hardware architectures
	2.2 Analysis of hardware architectures

	Motivation for present work
	3.2 alternative communication links
	3.3 advantages of the usb

	The universal serial bus
	4.1 usb architectural overview
	4.2 usb transfer types
	4.3 usb enumeration

	the usb stimulator device
	5.1 the usb core
	The USB 1.1 transceiver used for the system was a commercially manufactured IC chip. The USB port used was a standard type A connector. All the other blocks have been implemented in Verilog HDL. Some of the above blocks are top-level blocks, i.e., they consist of more than one lower level Verilog modules. This section also describes the overall functioning of the USB core from a data-flow perspective.
	5.2 usb-block chip interface
	5.3 usb-neurotalk interface
	5.4 usb bandwidth analysis

	fpga prototype design
	6.1 USB-Block chip interface
	6.2 usb-neurotalk interface
	After the successful testing of the USB-Block chip interface, the neurotalk interface was designed to interface with the USB. Although it had certain similarities with the block chip interface, it took considerably less time to design due to the fact that the interface to the USB core had already been studied extensively while designing the USB-block chip interface. While the USB-block chip interface took about 16 weeks to design and implement, it took only about 1 week to design, implement, test and debug the USB-Neurotalk interface. Out of the 16 weeks for the block chip interface, it took 4 weeks to design the FPGA development board, and 12 weeks to learn the inner functioning of the USB core.
	6.3 fpga development board
	6.4 device driver and application

	USB-interface system testing
	7.1 FPGA board design and testing
	7.2 usb core testing and verification
	7.3 interface testing and verification
	The only problem encountered while designing the interface what that of clock jitter. The DCLK and TCLK used by the block chip were derived from the main 48MHz clock. The main clock was observed to jitter, when viewed on a logic analyzer. This jitter was hence also induced in the DCLK and TCLK. The source of the problem on the derived clocks and a solution is presented below. The problem is shown in figure 7.4.

	asic design flow
	8.1 Sysnthesis
	8.2 Layout
	8.3 drc & lvs checks

	discussion of achieved results
	9.1 fpga prototype TEST RESULTS

	Discussion
	10.1 usb device implementation
	10.2 recommendations
	10.3 test results

	conclusion
	[2] Ben-Haim S. A., Anuchink C.L., Dinnar U. A Computer Controller for Vest
	Cardiopulmonary Resuscitation (CPR). IEEE Transactions on BME, May 1988.


